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Abstract
This note investigates the impact of application fees on student strategies within the

Deferred Acceptance mechanism (DA). We demonstrate that application fees reduce the
set of Nash equilibria under DA. While this reduction may preserve the existence of Nash
equilibria leading to assignments Pareto-dominating the student-optimal stable assignment,
it may also preclude the existence of such equilibria. This occurs when application fees are
positive for all students at a given school.
JEL Classification: C78, D47, D82.
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1 Introduction

Following Gale and Shapley’s (1962) seminal paper, matching theory has influenced the design
of college admission systems (Roth and Sotomayor 1990; Abdulkadiroğlu and Sönmez 2003).
The student-proposing deferred acceptance mechanism (DA) is a widely used mechanism in this
context. DA produces the student-optimal stable assignment and is strategy-proof for students
(Roth 1982). However, schools must rank students by reviewing applications, which incurs costs.
To offset these costs or limit the number of applicants, application fees are often introduced.
This note investigates how such fees influence student strategies in a preference revelation game.
We consider a setting in which students have lexicographic preferences over DA outcomes, pri-
oritizing assignments first and application fees second. This assumption reflects the typically
low magnitude of application fees, which makes them unlikely to influence students’ preferences
for more desirable assignments. Empirical evidence from He and Magnac (2022) supports this
assumption.
Constraints on students’ choices can affect their strategic behavior.1 Even low application fees
can limit the range of schools to which students choose to apply. We show that these fees reduce
the set of Nash equilibria in DA (Theorem 1) and explore how this reduction impacts student
welfare.
It is well known that certain Nash equilibria under DA can lead to assignments that Pareto-
dominate the student-optimal stable assignment.2 In our Example 1, we show that specific

∗I am grateful to Olivier Bos, Vincent Iehlé, and Olivier Tercieux for their valuable comments.
†Université Paris-Saclay, ENS Paris-Saclay, CEPS. E-mail address: cyril.rouault@universite-paris-saclay.fr
1See Haeringer and Klijn (2009) for restrictions on the number of schools to which students can apply and

Chade et al. (2014) for the role of application fees. While Haeringer and Klijn (2009) consider a constraint
imposed on students, we examine the strategic response to the implementation of constraints such as application
fees.

2Bando (2014), Dur and Morrill (2020), and Rouault (2023) explore Nash equilibria that yield such assignments
in the absence of application fees.
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profiles of application fees can result in such outcomes. However, these fees can also prevent
the existence of such Nash equilibria. Our Theorem 2 establishes a sufficient condition on the
application fee profile to prevent the existence of a Nash equilibrium that leads to certain as-
signments Pareto-dominating the student-optimal stable assignment. This condition holds when
application fees are positive for all students applying to a given school. The main argument in
the proof is that students do not apply to a school with a positive application fee unless they
are assigned to it.
Furthermore, we show that when application fees are positive for all students at all schools, the
outcomes of Nash equilibria coincide with stable assignments (Proposition 2). In the context
of a large market, all equilibrium outcomes are stable (Artemov et al. 2023). Our results sug-
gest that in a finite economy, equilibrium outcomes that are not stable are not robust to the
implementation of application fees.

2 Model

In a (school choice) problem with application fees, there is a finite set of students, I, and a finite
set of schools, S. Each school s ∈ S has a capacity qs, and q ≡ (qs)s∈S represents the capacity
vector. Let ∅ denote the option of being unassigned, with q∅ = |I|. Each student i has strict
preferences Pi over S ∪ {∅}. Let P ≡ (Pi)i∈I be the preference profile of all students. Let P
be the set of all possible strict rankings over S ∪ {∅}. Each school s has a strict priority order
≻s over I. Let ≻≡ (≻s)s∈S be the priority profile of all schools. An application fee profile is a
|I| × |S|-dimensional matrix C, where each element ci,s ∈ {0, 1} represents the application fee
of student i to school s: ci,s = 0 means the application fee for student i to school s is zero,
while ci,s = 1 means the fee is positive. For each i ∈ I, we set ci,∅ = 0. Let C0 denote a null
application fee profile, where for each i ∈ I and s ∈ S, ci,s = 0. Let C be the set of all application
fee profiles. For notational convenience, we typically represent (I, S, q, P, ≻, C) by (P, C).
An assignment is a correspondence µ : I ∪ S ∪ {∅} → I ∪ S ∪ {∅} such that for each i ∈ I, µ(i) ∈
S ∪ {∅}, for each s ∈ S, µ(s) ⊆ I with |µ(s)| ≤ qs, and for each i ∈ I, µ(i) = s if and only if
i ∈ µ(s). Student i’s prefences Pi over schools implicitly define a preference relation Ri over
assignments as follows: µ(i)Riµ̂(i) if and only if µ(i)Piµ̂(i) or µ(i) = µ̂(i).
An assignment µ is stable if:

• µ is individually rational, i.e., for each i ∈ I, µ(i)Ri∅,
• µ is non-wasteful, i.e., for each i ∈ I and each s ∈ S, sPiµ(i) implies |µ(s)| = qs,
• there is no justified envy, i.e., for each i, j ∈ I with µ(j) = s, sPiµ(i) implies j ≻s i.

Let S(P, C) denote the set of stable assignments for problem (P, C). An assignment µ Pareto-
dominates an assignment µ̂ if for each i ∈ I, µ(i)Riµ̂(i) and there exists at least one i such
that µ(i)Piµ̂(i). An assignment is (Pareto) efficient if it is not Pareto-dominated by any other
assignment. A stable assignment is the student-optimal stable assignment if it Pareto-dominates
all other stable assignments. In this note, we denote it by µI .
A mechanism φ selects for each problem (P, C) an outcome φ(P, C) = (µ, cP ), where µ is an
assignment and cP is a vector cP ≡ (cPi)i∈I . For each student i ∈ I, we denote the outcome
of φ(P, C) by φ(P, C)(i) = (µ(i), cPi), where student i is assigned to µ(i) ∈ S ∪ {∅} and cPi =
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∑
s∈A(Pi) ci,s.3 Each problem (P, C) and mechanism φ induce a game where students are the

players. We refer to the preference profile P as the students’ true preferences. For each student,
the strategy space is P. Let P̃i ∈ P denote the strategy of student i in the strategy profile P̃ ,
and let P |I| represent the set of all possible strategy profiles. A school s is acceptable to i under
P̃i ∈ P if sP̃i∅, and let A(P̃i) ≡ {s ∈ S : sP̃i∅} denote the set of acceptable schools to i under
P̃i. We consider the complete information environment such that preferences and priorities
of all students are commonly known. We assume the lexicographic preference of students over
outcomes, such that for each i ∈ I, (µ(i), cP̃i

)⋗i (µ̂(i), ĉP̃i
) if and only if µ(i)Piµ̂(i) or µ(i) = µ̂(i)

and cP̃i
< ĉP̃i

.
A strategy profile P̃ is a Nash equilibrium under φ if for each i ∈ I, there is no strategy P̂i such
that P̂i ̸= P̃i, and φ((P̂i, P̃−i), C)(i)⋗i φ(P̃ , C)(i), where P̃−i ≡ (P̃j)j∈I\{i}. For problem (P, C),
let DA(P̃ , C) denote the outcome of the deferred acceptance mechanism (DA) with strategy
profile P̃ , and NE(DA(P, C)) the set of strategy profiles P̃ that are Nash equilibria under DA

for problem (P, C).
We now introduce an example to illustrate our model and results.

Example 1. Consider a problem (I, S, P, ≻, q, C0) such that I = {i1, i2, i3}, S = {s1, s2, s3}, for
each s ∈ S, qs = 1. Preferences and priorities are given in the following tables, and (·) indicates
that priorities are irrelevant to the problem:

≻s1 ≻s2 ≻s3

i3 i1 ·
i1 i2 ·
i2 i3 ·

Pi1 Pi2 Pi3

s∗
1 s1 s∗

2
s2 s2 s1
s3 s∗

3 s3
∅ ∅ ∅

µI is underlined in students’ preferences and µ∗ is denoted by a star (∗). It is clear that µ∗

is the only assignment that Pareto-dominates µI , and µ∗ is efficient. From the literature, we
know that P ∈ NE(DA(P, C0)) (Gale and Shapley 1962). Now, suppose we introduce an
application fee profile C, where ci2,s2 = 1 and 0 for all other entries of C. With this application
fee profile and given the strategies of the other students, P−i2 , there exists a profitable deviation
for i2: namely, not applying to s2. There exists a strategy profile P̃i2 : s1, s3, ∅ such that
DA((P̃i2 , P−i2), C)(i2) ⋗i2 DA(P, C)(i2) and P /∈ NE(DA(P, C)). This illustrates that the set
of Nash equilibria is reduced by implementing application fees. Following i2’s deviation, for each
i ∈ I, DA((P̃i2 , P−i2), C)(i) = (µ∗(i), 0). Furthermore, (P̃i2 , P−i2) ∈ NE(DA(P, C)). Therefore,
there exist application fee profiles that lead to a Pareto improvement while maintaining the
existence of a Nash equilibrium that results in an assignment Pareto-dominating the student-
optimal stable assignment.

3In our model, cPi represents the number of schools with applications fees acceptable to student i with
preferences Pi. We implicitly assume that the application fees of all schools are similar, and consider only the
sum of these schools rather than the sum of the fees.
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3 Results

3.1 Impact of Application Fees on the Set of Nash Equilibria

In this section, we show that application fees reduce the set of Nash equilibria.

Theorem 1. For any application fee profile C ∈ C, NE(DA(P, C)) ⊆ NE(DA(P, C0)).

Proof. Assume by contradiction that there exists P̃ such that P̃ ∈ NE(DA(P, C)) and P̃ /∈
NE(DA(P, C0)). This implies that there exist i ∈ I and P̂i ̸= P̃i such that DA((P̂i, P̃−i), C0)(i)⋗i

DA(P̃ , C0)(i). This means that for DA((P̂i, P̃−i), C0)(i) = (µ̂(i), cP̂i
) and DA(P̃ , C0)(i) =

(µ̃(i), cP̃i
), either µ̂(i)Piµ̃(i) or µ̂(i) = µ̃(i) and cP̂i

< cP̃i
. Since C0 is the null application

fee profile, we know that cP̂i
= cP̃i

= 0, and thus, µ̂(i)Piµ̃(i). Consider P̃−i, C, and P ∗
i : µ̂(i), ∅.

We have to show that DA((P ∗
i , P̃−i), C)(i) ⋗i DA(P̃ , C)(i).

Lemma 1. Let DA(P̃ , C)(i) = (µ̃(i), cP̃i
) and P ∗

i : µ̃(i), ∅ such that DA((P ∗
i , P̃−i), C)(i) =

(µ∗(i), cP ∗
i
). Then, µ̃(i) = µ∗(i).

Proof. Suppose that µ̃(i) ̸= µ∗(i). There exists s ∈ A(P̃i) such that s ̸= µ̃(i) and s ̸= µ∗(i).
However, i has been rejected from s in DA(P̃ , C), and by the construction of DA, this leads to
a contradiction.4 ■

From Lemma 1 we know that if i applies only to µ̂(i) in DA(P̃ , C), using strategy P ∗
i , then i is

assigned to µ̂(i), and µ̂(i)Piµ̃(i). Therefore, DA((P ∗
i , P̃−i), C)(i) ⋗i DA(P̃ , C)(i), meaning that

P̃ is not a Nash equilibrium, which contradicts that P̃ ∈ NE(DA(P, C)). ■

Theorem 1 establishes that implementing application fees reduces the set of Nash equilibria.
The consequence is that all strategy profiles that are Nash equilibria with the application fee
profile are also Nash equilibria without fees.

3.2 Application Fees and Nash Equilibria Leading to Pareto Improvements

In this section, we identify a condition on the application fee profile that prevents the existence
of Nash equilibria leading to an assignment µ that Pareto-dominates the student-optimal stable
assignment.

Proposition 1. For any problem (P, C), if P̃ ∈ NE(DA(P, C)), with DA(P̃ , C) = (µ, cP̃ ), then
for each i ∈ I, cP̃i

= ci,µ(i).

Proof. By contradiction, suppose there exists P̃ ∈ NE(DA(P, C)) such that there exists i ∈ I,
with DA(P̃ , C)(i) = (µ(i), cP̃i

) and cP̃i
̸= ci,µ(i). Since DA(P̃ , C)(i) = (µ(i), cP̃i

), it follows
that µ(i) ∈ A(P̃i), and thus cP̃i

> ci,µ(i). Consider P̂i : µ(i), ∅, such that DA((P̂i, P̃−i), C)(i) =
(µ̂(i), cP̂i

). We know that cP̂i
= ci,µ(i). We need to show that (µ̂(i), cP̂i

) ⋗i (µ(i), cP̃i
). Suppose

(µ(i), cP̃i
) ⋗i (µ̂(i), cP̂i

). This implies either µ(i)Piµ̂(i) or µ(i) = µ̂(i) and cP̃i
< cP̂i

. It is
straightforward that cP̃i

> cP̂i
. From Lemma 1, we have µ(i) = µ̂(i), which contradicts P̃ ∈

NE(DA(P, C)). ■

4McVitie and Wilson (1970) show that DA can be decomposed by considering an order of application among
the students rather than simultaneous applications. Lemma 1 follows as a direct consequence of their Theorem 1.
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The intuition behind Proposition 1 is that, when the strategies of other students are fixed,
no student will apply to a school with a positive application fee unless they are assigned to it.
Proposition 1 therefore implies that, in any Nash equilibrium, students apply to such schools only
if they are assigned to them. From this reasoning, we derive our second main result. Theorem 2
identifies a sufficient condition on application fee profiles such that for an assignment µ that
Pareto-dominates the student-optimal stable assignment, no Nash equilibrium exists that leads
to µ with DA.

Theorem 2. Consider a problem (P, C), and an assignment µ that Pareto-dominates µI . Let
i∗, j be students such that µ(i∗)Pi∗µI(i∗) and µ(i∗)Pjµ(j), with j ≻µ(i∗) i∗. If for each i ∈ I

such that i ≻µ(i∗) j and µ(i) ̸= µ(i∗), we have ci,µ(i∗) = 1, then there does not exist P̃ ∈
NE(DA(P, C)) such that DA(P̃ , C) = (µ, cP̃ ).

Proof. By contradiction, suppose there exists P̃ ∈ NE(DA(P, C)) such that DA(P̃ , C) = (µ, cP̃ )
and µ Pareto-dominates µI . First, let us show that such students i∗ and j exist and that
µ(i∗) ∈ S. By the definition of stability and the Pareto-domination of the student-optimal
stable assignment µI (Gale and Shapley 1962), we know that there exists i∗, j ∈ I such that
µ(i∗)Pi∗µI(i∗) and µ(i∗)Pjµ(j), with j ≻µ(i∗) i∗. Since µ Pareto-dominates µI , we know that
µ(i∗) ̸= ∅ because µI(i∗) is individually rational and µ(i∗)Pi∗µI(i∗)Ri∗∅.
Second, we now show that j has a profitable deviation and can be assigned to µ(i∗). By applying
to µ(i∗), (i) a student will be rejected, and (ii) no student whose application could lead to the
rejection of j will apply to µ(i∗).
(i) Since µI is stable, there is no justified envy. Therefore, for each i ∈ I such that µI(i) = µ(i∗),
it holds that i ≻µ(i∗) i∗. Additionally, since µI is non-wasteful, it follows that |µI(µ(i∗))| =
qµ(i∗). Since µ Pareto-dominates µI , we know that |µ(µ(i∗))| = qµ(i∗) (i.e. µ(i∗) has reached its
maximum capacity under assignment µ). Thus, if j applies to µ(i∗), we know that a student
will be rejected because j ≻µ(i∗) i∗.
(ii) Let us now consider the strategy of other students. By Proposition 1, if the application fee
for a school is positive for a student and the student is not assigned to that school, then at a
Nash equilibrium, the student does not apply to it. Since for each i ∈ I such that i ≻µ(i∗) j and
µ(i) ̸= µ(i∗), we have ci,µ(i∗) = 1, it follows that µ(i∗) /∈ A(P̃i). Thus, in the strategy profile
P̃ , at most qµ(i∗) − 1 students with a higher priority than j at µ(i∗) apply to µ(i∗) (since i∗ is
assigned to µ(i∗) under DA(P̃ , C)).
Now, let us consider a strategy for j, denoted P̂j : µ(i∗), ∅. Given that DA(P̃ , C) = (µ, cP̃ ), with
i∗ assigned to µ(i∗) and j ≻µ(i∗) i∗, we know that in DA((P̂j , P̃−j), C), j applies to µ(i∗) and
a student will be rejected from µ(i∗) since µ(i∗) has reached its maximum capacity. Student j

cannot be rejected from µ(i∗), because at most qµ(i∗) − 1 students with a higher priority than
j apply to µ(i∗) in P̃−j . Therefore, DA((P̂j , P̃−j), C)(j) = (µ(i∗), cj,µ(i∗)) and (µ(i∗), cj,µ(i∗)) ⋗j

(µ(j), cP̃j
) as µ(i∗)Pjµ(j), which contradicts that P̃ ∈ NE(DA(P, C)). ■

Theorem 2 can be illustrated with Example 1. Consider P̃ such that P̃i1 = Pi1 , P̃i2 : s1, s3, ∅ and
P̃i3 = Pi3 . Under the assignment µ∗, the student i1, who has a higher priority than i2 at school
s2, is not assigned to s2. If an application fee profile C is introduced such that ci1,s2 = 1, then i1

does not apply to s2 (Proposition 1). For instance, the strategy of i1 could be P̂i1 : s1, s3, ∅. The
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strategy profile (P̂i1 , P̃−i1) is not a Nash equilibrium, as the student i2 has a profitable deviation,
for example, by using the strategy P̂i2 : s2, ∅. We have DA((P̃i3 , P̂−i3), C)(i2) = (s2, ci2,s2) and
s2Pi2µ∗(i2).

In practice, application fees are often uniform across all students at a given school. This aspect
is discussed in the next section. Thus, the condition identified in Theorem 2 is satisfied if,
for all students, the application fee for µ(i∗) is positive. Application fees can hinder Pareto
improvements for certain students. Proposition 2 completes Theorem 2 by establishing that
when all schools impose positive application fees on all students, only stable assignments can
be obtained at Nash equilibrium. Therefore, the best assignment students can expect in a Nash
equilibrium of DA is the student-optimal stable assignment.

Proposition 2. Consider a problem (P, C). If for each i ∈ I, s ∈ S, ci,s = 1, then for each
P̃ ∈ NE(DA(P, C)) with DA(P̃ , C) = (µ, cP̃ ), we have µ ∈ S(P, C).

Proof. From Proposition 1, we know that for each P̃ ∈ NE(DA(P, C)), for each i ∈ I, we have
DA(P̃ , C)(i) = (µ(i), cP̃i

), with cP̃i
= ci,µ(i), therefore, |A(P̃i)| ≤ 1. Then, by Theorem 5.3 of

Haeringer and Klijn (2009), it directly follows that only stable assignments can be obtained at
Nash equilibrium when students apply to at most one school. ■

4 Discussion

In this note, we demonstrate that application fees reduce the set of Nash equilibria under DA.
Furthermore, we identify a sufficient condition in the application fee profile that prevents the
existence of Nash equilibria leading to an assignment that Pareto-dominates the student-optimal
stable assignment. This condition holds when fees are positive for all students at a given school.
In some centralized admission mechanisms, students are required to pay application fees to apply
to various programs. For instance, in the United States, the Common App enables students to
apply to multiple universities, some of which charge application fees for all applicants.5 Similarly,
in France, the Parcoursup platform includes business schools that impose application fees.6 Our
results suggest that these costs prevent Pareto improvements for students.
One potential solution would be to allow students to apply free of charge to certain schools.
Various criteria could be considered for waiving the fees, such as the student’s background in
a disadvantaged socio-economic context, or demonstrating a particular interest in the program.
For example, at Penn State DuBois, application fees are waived if a student has visited the
campus.7

This note emphasizes the importance of carefully designing application fee profiles in college
admission mechanisms. A natural follow-up research would be to investigate mechanisms that
allow for fee waivers for certain applicants, which could potentially improve student assignments.

5The description is available at https://www.commonapp.org/apply) (last accessed on 12/17/2024).
6The description is available at https://www.parcoursup.gouv.fr/trouver-une-formation/quelles-formations-

sont-accessibles-sur-parcoursup-1318 (last accessed on 12/17/2024).
7The description is available at https://dubois.psu.edu/visit-campus-waive-your-application-fee (last accessed

on 12/17/2024).
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Furthermore, laboratory experiments could complement our theoretical analysis by providing
insights into the impact of application fees on student behavior and outcomes.
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