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Abstract

We study a doctor-hospital matching market with contracts, where hos-
pitals can offer a range of contract terms to doctors. Surprisingly, expand-
ing the set of available terms can reduce doctors’ welfare without improving
the allocation for others. In contrast, our results suggest that limiting the
options available to doctors can lead to a Pareto improvement. We then
examine the necessary conditions on agents’ preferences to prevent reduc-
tions in doctors’ welfare. We demonstrate that only agent-lexicographic
preferences for all agents guarantee that no doctor experiences a decrease
in welfare when available terms are added.
JEL Classification: C78, D47, D71, D86.
Keywords: Matching with contracts; Stability; Adding terms; Welfare;
Agent-lexicographic preferences.

1 Introduction

Contract terms play a crucial role in various matching problems. In labor markets,
workers are assigned shift schedules and receive salaries; similarly, doctors are as-
signed to specific specialties within hospitals, and cadets are allocated to branches
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Vincent Iehlé, Olivier Tercieux, and Bumin Yenmez for their valuable comments.
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in the military. These terms are typically determined by firms, hospitals, or the
military, often with minimal involvement from regulators. Despite this limited
oversight, contract terms profoundly influence the welfare of market participants.
This raises a critical question: does offering a broader range of terms to agents
improve their welfare? This paper addresses this question and demonstrates that
the answer is negative in most markets. Furthermore, we show that narrowing
the range of available terms can lead to improved welfare for agents.

For concreteness, we use the terminology of doctors and hospitals to describe
market participants, but our framework is applicable to a variety of contexts, such
as school choice or housing markets.1 Typically, a centralized mechanism allocates
doctors to hospitals under specified contract terms, ensuring a stable allocation
(Roth, 1982). For example, the National Resident Matching Program (NRMP)
in the United States is a centralized system that matches medical students with
residency training programs.2 Hospitals offer terms and rank doctors for different
specialties, while doctors express their preferences over the terms available at each
hospital. A mechanism then determines the resulting allocation.

We adopt the many-to-one matching with contracts model (Hatfield and Mil-
grom, 2005) to analyze the effects of adding possible contract terms. Unlike the
standard model, our framework allows each hospital to offer a set of terms to
doctors. If a specific term t is available at a hospital h, then for every doctor, a
contract involving the doctor, hospital h, and term t is available. Conversely, if
a term t′ is not available at hospital h, then no contract involving hospital h and
term t′ is available to any doctor. This framework aligns with the models used
by Sönmez (2013) and Sönmez and Switzer (2013) in the context of cadet-branch
matching.

Intuitively, one might expect that offering more options would benefit doctors,
as suggested by the matching model proposed by Gale and Shapley (1962). In
the marriage problem, when an additional woman enters the market, each man
weakly prefers the new man-optimal stable allocation, and some men strictly prefer

1In school choice, contract terms can represent tuition fees or the academic pathways chosen
by students, while in housing markets, terms may reflect factors such as family size or income.

2The NRMP processes over 48,000 applications for 38,000 positions annually, spanning
more than 60 subspecialties. In this paper, we treat subspecialties as potential contract terms.
https://www.nrmp.org/.
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it if the new woman is not single.3 However, using examples in which contract
terms represent salaries (Echenique 2012, Schlegel 2015) we show that offering
more terms can reduce doctors’ well-being—even when one of the new terms is
utilized.4 The intuition behind these examples is that additional terms intensify
competition among doctors, compelling some to accept less desirable contracts to
secure employment. This welfare reduction can occur even when the added terms
lie on the Pareto frontier (Echenique, 2012).

These findings challenge the conventional intuition that expanding options al-
ways benefits agents, prompting us to explore solutions that mitigate the negative
impact of adding contract terms. In this regard, we propose an approach that re-
sults in an allocation that either Pareto improves the allocation of doctors or
maintains the same allocation. This approach consists in withdrawing terms that
are not used. However, we identify two limitations to this approach. First, the
Pareto improvement is not always possible. Second, it is not possible to (strictly)
improve the allocation of all doctors. This result also implies that adding terms
cannot reduce the well-being of all doctors. More generally, our results highlight
the importance of the design of contract terms in the well-being of agents in the
market.

We then analyze conditions on agents’ preferences that prevent welfare re-
ductions when new terms are introduced, aiming to identify which markets are
susceptible to this phenomenon. Through illustrative examples, we demonstrate
that traditional approaches based on acyclic preference structures (Ergin, 2002;
Pakzad-Hurson, 2023) fail to prevent welfare reductions. Instead, our results in-
dicate that only agent-lexicographic preferences across all agents can guarantee no
welfare loss. Agent-lexicographic preferences prioritize the agent over the contract
term, treating the latter as secondary. Consequently, if even one agent in the mar-
ket, whether a doctor or a hospital, does not have agent-lexicographic preferences,
a reduction in doctors’ welfare can occur. This finding highlights the vulnerability
of many markets, as agent-lexicographic preferences impose a stringent condition.

3This result is introduced by Proposition 2 of Gale and Sotomayor (1985) and is further
explored by Roth and Sotomayor (1992), who present these results as Theorems 2.25 and 2.26
(pp. 44-45).

4The key difference in this paper is that we are adding terms rather than agents.
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Building on these theoretical insights, we explore markets where agents’ prefer-
ences are common and polarized. This setting is particularly relevant for markets
with salaries, in which doctors prefer higher salaries for a given hospital, while
hospitals prefer lower salaries for a given doctor. We identify three necessary con-
ditions to prevent welfare reductions. First, at least one of the added terms must
be utilized. Second, the hospital offering the new terms must employ the same
doctors. Third, the added terms must be preferred by doctors over the existing
ones. Under these conditions, however, the hospital offering the new terms is
worse off, raising questions about its incentives to introduce them.

In markets without contracts, it is well-known that hospitals can cooperate to
improve their allocations (Roth, 1985). We show that cooperation is unnecessary
when it comes to offering terms. Our findings suggest that if the mechanism used
in the market leads to a hospital-optimal stable allocation, each hospital always
has an incentive to expand its set of terms, regardless of the terms offered by other
hospitals. This further highlights the importance of regulating the terms made
available by hospitals.

Related Literature

This paper connects to several strands of the literature. First, it builds on the
centralized matching literature initiated by Gale and Shapley (1962) and extended
to include contracts by Crawford and Knoer (1981), Kelso and Crawford (1982),
Fleiner (2003), and Hatfield and Milgrom (2005). Within this framework, many
applications have been studied using contract terms as representations of agents’
opportunities. For example, Sönmez and Switzer (2013) and Sönmez (2013)
model the options available to cadets regarding the duration of their enlistment in
the U.S. Army. Similarly, Hatfield and Kominers (2015) explore interns’ choices
across hospital departments, and Kominers and Sönmez (2016) analyze airline up-
grade systems. Markets involving monetary transfers can also be modeled within
this framework, with contract terms representing salaries. Echenique (2012) and
Schlegel (2015) demonstrate that when firms’ preferences satisfy the substitutes
condition, the matching with contracts framework effectively captures labor mar-
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kets with salaries. Our results apply to all markets analyzed in these contributions.
While these studies provide significant insights into agents’ welfare, none have ad-
dressed the design of contract terms. Hatfield and Kominers (2017) contribute to
the literature by emphasizing the importance of contract design in many-to-many
matching with contracts. Unlike their work, which focuses on restricting the set of
contracts, we examine how limiting the set of available terms can improve doctors’
welfare within stable allocations. This enables us to analyze the welfare impact
of adding terms, a dimension absent from their contribution.

Our findings also contribute to the literature studying the role of preference
structures in agents’ welfare. Ergin (2002) shows that stable and efficient match-
ings exist when preferences are acyclic. Pakzad-Hurson (2023) extends this anal-
ysis to markets with contracts by introducing agent-lexicographic preferences as
an additional condition alongside acyclicity to ensure stability and efficiency. Ad-
ditionally, common and polarized preferences have been widely studied in job-
matching contexts, especially concerning salaries. Kelso and Crawford (1982)
and Roth (1984) examine these preferences in markets without contracts, while
Echenique (2012), Kominers (2012), and Schlegel (2015) study their implications
in the presence of contracts. To the best of our knowledge, our paper is the first
to identify conditions on agents’ preferences that prevent reductions in doctors’
welfare when terms are added.

Finally, this paper contributes to the literature on incentives and welfare in
matching markets. Much of the existing work in the literature focuses on choice
functions within the matching with contracts framework. For example, Chambers
and Yenmez (2017) and Yenmez (2018) analyze how choice functions influence
stable allocations, with an emphasis on improving doctors’ allocations. In con-
trast, we examine how the availability of contract terms affects doctors’ welfare,
while maintaining hospitals’ incentives to choose their preferred contracts. Afa-
can (2017) investigate the cumulative offer process when doctors expand their
set of acceptable contracts and its impact on welfare. Our approach diverges by
exploring how expanding the set of terms available to doctors influences welfare,
regardless of their acceptability. Furthermore, we provide insights into hospitals’
incentives to offer terms to doctors.
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The structure of the paper is as follows: Section 2 introduces the model,
presents two motivating examples, and outlines our approach. In Section 3, we
analyze the impact of adding terms on the set of stable allocations and welfare.
Section 4 examines the conditions on preferences that prevent reductions in wel-
fare. Section 5 studies hospital incentives. Section 6 concludes. Additional results
on the structure of stable allocations are provided in Appendix A. All proofs are
collected in Appendix B.

2 Model

2.1 Allocation Problem

There are finite sets D = {d1, d2, ..., dn} and H = {h1, h2, ..., hm} of doctors and
hospitals, and a finite set T = {t1, t2, ..., tℓ} of terms. There is a set X of contracts
specifying relationships between doctor-hospital pairs, represented as X = D ×
H×T . Each contract x ∈ X is associated with a doctor xd ∈ D, a hospital xh ∈ H,
and a term of their match xt ∈ T . Each doctor can sign at most one contract.
The null contract, which indicates that the doctor or hospital has no contract, is
denoted by ∅. For a set of contracts X ⊆ X , we define Xd ≡ {x ∈ X : xd = d}
as the set of contracts in X associated with doctor d ∈ D. Similarly, we define
Xh ≡ {x ∈ X : xh = h} as the set of contracts in X associated with hospital
h ∈ H. A set of contracts X ⊆ X is an allocation if each doctor d ∈ D is involved
in at most one contract, formally, |Xd| ≤ 1.

Each hospital h offers a set of available terms Th ⊆ T . Let T ≡ (Th)h∈H be
the vector of terms. For relevance, we assume that Th ̸= ∅ for each hospital h. For
each doctor d ∈ D, ≻d represents a strict preference relation over Xd ∪ {∅}. Let
≻D≡ (≻d )d∈D denote the preference profile of doctors. A contract is acceptable
if it is strictly preferred to the null contract and unacceptable if it is strictly
dispreferred to the null contract. For each d ∈ D and X ⊆ X , we define the
chosen set Cd(X) as Cd(X) ≡ max≻d

[{x ∈ Xd : xt ∈ Txh
} ∪ {∅}].5 In words,

doctors choose their preferred contracts among those whose terms are available
5We use the notation max≻d

to indicate maximization with respect to the preferences of
doctor d.
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at the associated hospital, or the null contract if all contracts are unacceptable.
Let CD(X) ≡ ⋃

d∈D Cd(X) be the set of contracts chosen from X by doctors.
Hospitals can sign multiple contracts. Each hospital h ∈ H has a strict pref-

erence relation ≻h on 2Xh ∪ {∅}. Let ≻H≡ (≻h)h∈H denote the preference profile
of hospitals. For each h ∈ H and X ⊆ X , we define the chosen set Ch(X)
as Ch(X) ≡ max≻h

[{X ′ ⊆ Xh : for each d ∈ D, |X ′
d| ≤ 1, and for each x ∈

X ′, xt ∈ Txh
} ∪ {∅}].6 In words, each hospital selects its preferred subset of

contracts from X, ensuring that for the chosen contracts, the associated term is
offered and that each doctor is involved in at most one selected contract. Let
CH(X) ≡ ⋃

h∈H Ch(X) be the set of contracts chosen from X by hospitals.
A problem is a tuple (D, H, T, ≻D, ≻H). Let Π be the set of all problems. We

fix D, H, ≻D and ≻H throughout the paper and denote a problem by π(T ). An
allocation X is feasible if for each x ∈ X we have xt ∈ Txh

. Let F(π(T )) denote
the set of feasible allocation for problem π(T ).

A doctor d’s preferences ≻d over contracts implicitly define a preference rela-
tion ⪰d over allocations as follows: Xd ⪰d Yd if and only if Xd ≻d Yd or Xd = Yd.7

Similarly, hospital h’s preferences ≻h over sets of contracts implicitly define a pref-
erence relation ⪰h over allocations as follows: Xh ⪰h Yh if and only if Xh ≻h Yh

or Xh = Yh.
We can now introduce the notion of stability for allocations.

Definition 1. An allocation X ⊆ X is stable if
(i) CD(X) = CH(X) = X,
(ii) there exists no hospital h, and set of contracts Y ̸= Ch(X) such that Y =

Ch(X ∪ Y ) ⊆ CD(X ∪ Y ).

When (ii) is violated by some Y , we say that Y blocks X. We denote by
S(π(T )) the set of stable allocations for problem π(T ).

A mechanism φ maps any problem to a feasible allocation, formally, φ : π(T ) ∈
Π → φ(π(T )) ∈ F(π(T )). An allocation X ⊆ X Pareto dominates an allocation
Y ⊆ X if for each doctor d ∈ D, Xd ⪰d Yd and for at least one doctor d′ ∈

6Hospitals can only choose allocations, meaning that each doctor is concerned by at most
one contract.

7In an allocation, each doctor is involved in at most one contract, ensuring that preferences
over contracts determine preferences over allocations.
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D, Xd′ ≻d′ Yd′ . An allocation is Pareto efficient if it is not Pareto dominated by
any other allocation. We utilize the notion of lattice structure to focus on optimal
stable allocations. Given a problem π(T ), we say that an allocation X ∈ S(π(T ))
is the doctor-optimal stable allocation if every doctor weakly prefers X to all other
stable allocation. Similarly, an allocation X ∈ S(π(T )) is the hospital-optimal
stable allocation if every hospital weakly prefers X to all other stable allocations.

2.2 Substitutes Condition

In this article, we assume that contracts are substitutes for hospitals.

Definition 2 (Hatfield and Milgrom, 2005). Contracts are substitutes for h if
there do not exist contracts x, x′ ∈ X and a set of contracts X ⊆ X such that
x′ /∈ Ch(X ∪ {x′}) and x′ ∈ Ch(X ∪ {x, x′}).

The substitute condition ensures the monotonicity of the doctor-proposing
cumulative offer process (COP hereafter),8 thereby making renegotiation unnec-
essary.

Theorem 0. (Theorem 3 of Hatfield and Milgrom (2005)) Suppose contracts are
substitutes for hospitals. Then, for a given vector of terms T , S(π(T )) is non-
empty and forms a lattice. In addition, the COP generates the doctor-optimal
stable allocation.

Note that since we consider strict preferences, the irrelevance of rejected con-
tracts condition is not required (see Aygün and Sönmez, 2013).

2.3 Motivating Examples with Salaries

A common application of contract terms is salaries. Echenique (2012) demon-
strates that matching with contracts is equivalent to matching with salaries if
hospital preferences satisfy the substitute condition.9 In the case of salaries, the
Pareto frontier of contracts is one-dimensional, meaning that if a term benefits

8The COP was first introduced by Hatfield and Milgrom (2005). We introduce it formally
in Appendix B.3.

9This result is introduced in the Theorem 1 of Echenique (2012).
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the doctor, it necessarily becomes less favorable for the hospital. For simplicity,
we omit the mention of doctors and hospitals from the contract notation when
their identities are clear from the context (e.g., we write (d, t) ≻h (d′, t′) instead
of (d, h, t) ≻h (d′, h, t′)).

Example 1. Consider a problem where D = {d1, d2}, H = {h1, h2}, and terms
are salaries with T = {90, 100, 110}. The available salaries for each hospital are
T ′ = (T ′

h1 = {90, 100}, T ′
h2 = {100}) and Th1 = {90, 100, 110}. Contracts are

substitutes for hospitals, and preferences are given as follows:

Doctor
d1 (h1, 110) (h1, 100) (h1, 90)
d2 (h1, 110) (h2, 100)

Table 1: Preference profile of doctors

Hospital
h1 (d1, 90) (d2, 110) (d1, 100) (d1, 110)
h2 (d2, 100)

Table 2: Preference profile of hospitals

In the preference profile, we only note the acceptable contracts for both doctors
and hospitals. Thus, in Table 1, the contracts (d2, h1, 90) and (d2, h1, 100) are not
acceptable to doctor d2, and the contract (d1, h2, 100) is not acceptable to doctor
d1.

Considering the problem π(T ′), where the salary of 110 is unavailable at h1.
The doctor-optimal stable allocation is:

X
′ = {(d1, h1, 100), (d2, h2, 100)}.

Now suppose that hospital h1 offers an additional salary of 110. Consider problem
π(Th1 , T ′

−h1), where the new doctor-optimal stable allocation is:

X = {(d1, h1, 90), (d2, h2, 100)}.

Although hospital h1 offers a higher salary, d1’s wage decreases to 90. This
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example illustrates the significance of available terms and salaries in determining
the doctor-optimal stable allocation. Notably, the salary of 110 is on the Pareto
frontier. The interpretation is that the introduction of the higher salary creates
competition between the doctors, both of whom aim for the higher salary, which
ultimately forces d1 to accept a lower salary in order to secure a position.10

Example 1 carries important policy implications. By offering a salary of 110,
hospitals h1 can emphasize that it provides a higher salary compared to other
hospitals. This could strengthen the hospital’s image as an employer of choice.
However, the allocation is preferred by h1 without changing the doctor assigned
to it. Example 2 complements Example 1 by showing that even when the added
term is utilized, a reduction in well-being can still occur.

Example 2. Consider a problem where D = {d1, d2, d3}, H = {h1, h2, h3}, and
terms are salaries with T = {100, 110}. The available salaries for each hospital are
T ′ = (T ′

h1 = {100}, T ′
h2 = {100}, T ′

h3 = {100}) and Th1 = {100, 110}. Contracts
are substitutes for hospitals, and preferences are given as follows:

Doctor
d1 (h1, 110) (h1, 100) (h2, 100)
d2 (h2, 100) (h1, 110) (h1, 100)
d3 (h1, 110) (h3, 100) (h1, 100)

Table 3: Preference profile of doctors

Hospital
h1 (d2, 100) (d3, 100) (d2, 110) (d3, 110) (d1, 100) (d1, 110)
h2 (d1, 100) (d2, 100)
h3 (d3, 100)

Table 4: Preference profile of hospitals

The doctor-optimal stable allocation of π(T ′) is:

X
′ = {(d1, h1, 100), (d2, h2, 100), (d3, h3, 100)}.

10This interpretation relates to the concept of the Reserve army of labour introduced by
Engels and theorized by Marx (1867).
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Now, if hospital h1 offers an additional salary of 110 in problem π(Th1 , T ′
−h1),

the new doctor-optimal stable allocation is:

X = {(d2, h1, 110), (d1, h2, 100), (d3, h3, 100)}.

Doctor d2 accepts the new term but is worse off, while hospitals h1 and h2

benefit.

While Example 1 shows that the introduction of a higher salary results in a
reduction in the salary of one doctor, Example 2 demonstrates that introducing
a higher salary can reduce the welfare of doctors and attract a doctor preferred
by the hospital. Even though the salary offered by h1 is higher, it prefers d2 over
d1 for every available salary.

These examples highlight the two forces at play in such scenarios: reducing
the salary of doctors and attracting preferred doctors. While offering a higher
wage may help hospitals attract their preferred doctors, as shown in Example 2,
doctors may also be employed by hospitals not because of the higher salary, but
because they have lost their previous job.

2.4 Sub-Problems and Preliminary Result

In this section, we introduce our approach and define the sub-problems. A problem
π(T ) is defined in Section 2.1. A sub-problem of π(T ) is a problem that mirrors
π(T ), except that the set of available terms for at least one hospital is reduced.
We denote a sub-problem of π(T ) with an apostrophe on the vector of terms.
Formally, given a problem π(T ) ∈ Π, π(T ′) ∈ Π is a sub-problem of π(T ) if
π(T ) ≡ (D, H, T, ≻D, ≻H) and π(T ′) ≡ (D, H, T ′, ≻D, ≻H) with T ′ ⊂ T .11 Let
Π̃(π(T )) denote the set of sub-problems of π(T ). We can study the effects of adding
or withdrawing one or more terms for hospitals in a given problem. Given a sub-
problem π(T ′) ∈ Π̃(π(T )), we denote by X

′ the doctor-optimal stable allocation
and X ′ the hospital-optimal stable allocation.

When the set of available terms for a hospital h is reduced while all other hos-
pitals retain the same set of terms, we represent this sub-problem as π(T ′

h, T−h) ∈
11As stated in Section 2, we assume that T ′

h is non-empty for each h ∈ H.
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Π̃(π(T )). We can also consider the case where the set of terms available to hos-
pital h is expanded. To do so, we define the sub-problem π(T ′) by expanding the
set of terms for hospital h only, leading to the problem π(T ) ≡ π(Th, T ′

−h), where
T ′

h ⊂ Th.
Proposition 1 formalizes the observations presented in Example 1 and Example

2 for any given vector of terms. It establishes that the introduction of additional
terms can (i) diminish the welfare of certain doctors and (ii) do so even in cases
where one of the added terms is actively utilized. Additionally, it states the impact
of a reduction in doctors’ welfare on hospital allocation.

Proposition 1. There exist problems π(T ) ∈ Π and a sub-problem π(T ′) ∈
Π̃(π(T )) such that:

(i) There exists a non-empty subset of doctor D′ ⊂ D such that for each d ∈
D′, X

′
d ≻d Xd. If D′ ̸= ∅, then there exists a non-empty subset of hospital

H ′ ⊆ H such that for each h ∈ H ′, Xh ≻h X
′
h.

(ii) There exists a hospital h ∈ H and a term t ∈ Th \ T ′
h such that there exists

x ∈ Xh, xt = t, and X
′
xd

≻xd
Xxd

.

Proposition 1 thus states that when additional terms are introduced, if at least
one doctor is worse off, then at least one hospital prefers the new doctor-optimal
stable allocation. Note that the doctors in D′ are involved in contracts with
the hospitals in H ′ under the allocation X

′. Consequently, when the allocation
deteriorates for doctors, the hospitals to which these doctors are allocated under
X

′ prefer their new allocation under X.12

In Examples 1 and 2, terms are added for only one hospital, but there may be
policies that add terms available for specific sectors, thus affecting several hospitals
(or firms in the job market). These policies could include salary increases or the
possibility of longer working hours, for instance. A decrease in doctors’ welfare
is possible when the set of available terms is extended for a hospital, making it
evident that when new terms become available for several hospitals, a decrease in
welfare is also possible.

12Otherwise, they would prefer to rematch, which would contradict the stability property.
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3 Stability and Welfare

To investigate the impact of the addition of terms on doctors’ well-being, we begin
by examining the effect on the set of stable allocations.

3.1 Set of Stable Allocation

From Example 1, it is straightforward that by offering the term 110, an allocation
blocks the doctor-optimal stable allocation:

• Cd2({(d2, h1, 110), X
′
d2}) = (d2, h1, 110), and

• Ch1({(d2, h1, 110), X
′
h1}) = (d2, h1, 110).

A similar reasoning applies in Example 2. Following this observation, if a stable
allocation in a given problem becomes unstable when the set of available terms for
a hospital is expanded, then some of the newly added terms are used in contracts
forming a blocking allocation.13 The set of stable allocations can thus be reduced
by extending the set of available terms for a hospital. It is also clear that new
stable allocations can be obtained by adding new terms. Our approach is, there-
fore, to consider sub-problems by reducing the set of available terms. Our first
main result states that any allocation that is stable in the problem π(T ) remains
stable in each sub-problem of π(T ) where the allocation is feasible.14

Theorem 1. For any problem π(T ) ∈ Π,
(i) Suppose that X ∈ S(π(T )). For each π(T ′) ∈ Π̃(π(T )), if X ∈ F(π(T ′)),

then X ∈ S(π(T ′)).
(ii) Suppose π(T ′), π(T ′′) ∈ Π̃(π(T )). Then, S(π(T ′)) ∩ S(π(T ′′)) ⊆ S(π(T ′ ∪

T ′′)).

The converse of Theorem 1 (i) is false.15 Theorem 1 (ii) states that if we con-
sider two sub-problems π(T ′) and π(T ′′) of a problem π(T ), then all allocations

13Lemma 2 formalizes and proves this statement for any stable allocation.
14This is related to Proposition 3 of Hatfield and Kominers (2017). While Hatfield and

Kominers (2017) consider a subset of contracts, we consider a subset of available terms to
guarantee the stability of an allocation. The advantage of our approach is that we can identify
the vector of terms needed for the stability of X, which is absent from their formulations.

15Consider t /∈ T ′
h such that for each allocation X ∈ S(π(T ′)), we have (d, t) ≻h Xh, and

(h, t) ≻d Xd. Now consider T ∗ such that t ∈ T ∗
h and T ′ ⊂ T ∗. An allocation with the contract

x = (d, h, t) blocks X.
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that are stable in both sub-problems are also stable in a sub-problem where we
consider the union of the set of available terms for hospitals. Although this con-
dition is restrictive, it is necessary to ensure the stability of allocations when the
set of terms offered is expanded for certain hospitals. We present an additional
result on the structure of the set of stable allocations in Appendix A.

3.2 Reduction of Available Terms and Pareto Improve-
ment

From Theorem 1 it is evident that to guarantee the stability of an allocation when
the set of available terms is reduced, it is only necessary to maintain its feasibility.
Hence, if an allocation is stable and some terms are not used, they can be removed,
and in the resulting sub-problem, the allocation remains stable. Formally, given
an allocation X, a term t is not used by hospital h if there exists no x ∈ X

such that xh = h and xt = t. We now apply this reasoning to doctor-optimal
stable allocations.16 By withdrawing terms, some contracts that might constitute
blocking allocations for some allocations are no longer feasible. It is, therefore,
possible to achieve a Pareto improvement for doctors following the reduction of the
set of available terms for a hospital. In Example 1, the salary of 110 is not used in
X. By withdrawing it, we achieve a Pareto improvement: d1’s salary increases and
d2’s allocation remains unchanged under X

′.17 The following corollary formalizes
this point.

Corollary 1. For any problem π(T ) ∈ Π, suppose there exists h ∈ H such that
h has at least one term not used in the allocation X. Then, there exists T ′

h ⊂ Th

such that π(T ′
h, T−h) ∈ Π̃(π(T )), and either X

′ Pareto dominates X, or X = X
′.

The main implication of Corollary 1 is that limiting the terms available to
16Note that this result can be reformulated using the property of irrelevance of unused terms

in a stable allocation. Hirata et al. (2023) define the irrelevance of unchosen contracts by adding
contracts available to one doctor.

17When terms are withdrawn, doctors are no longer able to propose the associated contract
to the hospital. Kesten (2010) shows, in a setting without contracts, that student applications
to schools reduce the welfare of other students. Following Kesten’s 2010 terminology, these
contracts can be considered as an interrupter. However, in our model, when a term is withdrawn
from a hospital’s set of available terms, it is withdrawn for all doctors.
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doctors can improve their welfare. In the remainder of this section, we identify
the two major limitations of this approach. First, Pareto improvement is not
always possible and requires the removal of specific terms. Consider Example 1
and Th1 ; two terms are not used: 100 and 110. By removing term 100, such that
T ′′

h1 = {90, 110}, the allocation X
′ would not be feasible and, therefore, not stable

in π(T ′′
h1 , T−h1). The following example highlights the potential impossibility of

achieving a Pareto efficient allocation by removing available terms.

Example 3. Consider a problem where D = {d1, d2}, H = {h1, h2} and T =
{t, t′}. The vector of terms is given by T = (Th1 = {t, t′}, Th2 = {t}). Contracts
are substitutes for hospitals, and preferences are given as follows:

Doctor
d1 (h1, t) (h1, t′)
d2 (h1, t) (h2, t)

Table 5: Preference profile of doctors

Hospital
h1 (d1, t′) (d2, t) (d1, t)
h2 (d2, t)

Table 6: Preference profile of hospitals

The doctor-optimal stable allocation of π(T ) is:

X = {(d1, h1, t′), (d2, h2, t)}.

There is only one allocation X ′ that Pareto dominates X, such that

X ′ = {(d1, h1, t), (d2, h2, t)}.

Although X ′ Pareto dominates X and is Pareto efficient, there is no T ′ ⊂ T such
that X ′ ∈ S(π(T ′)). This is because the term to remove is t for hospital h1,
but removing it would prevent the feasibility of allocation X ′ because doctor d1

is assigned to h1 with term t. To maintain feasibility, adjustments would need to
be made to the terms offered to each doctor. For example, doctor d2 could be
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prevented from using term t at hospital h1, while doctor d1 retains the option.
However, such adjustments are beyond the scope of our current analysis.

The second limitation is that it is not possible to improve the allocation for
all doctors by removing terms. Therefore, there is no sub-problem in which all
doctors are strictly better off.

Theorem 2. For any problem π(T ) ∈ Π, there is no π(T ′) ∈ Π̃(π(T )) such that
for each d ∈ D, X

′
d ≻d Xd.

The symmetrical interpretation of Theorem 2 is that expanding the set of
available terms never reduces the welfare of every doctor. However, with |D| = n,
there are problems in which, when a term is added, n − 1 doctors are worse off.
Theorem 2 follows from the weak Pareto optimality of the doctor-optimal stable
allocation.18

4 Preference Domains

Thus far, we have focused on the set of stable allocations and the well-being of
doctors. In this section, we address the conditions on the preference profile that
prevent a decrease in welfare when terms are added. Our main objective is to
identify the markets where this reduction in doctors’ welfare does not occur.

4.1 Agent-Lexicographic Preferences

First, we consider agent-lexicographic preferences. We define the preferences of a
hospital h as doctor-lexicographic if, for any two acceptable contracts x, x′ ∈ X,
where xd = x′

d = d and xh = x′
h = h, there is no contract x′′ such that x′′

d ̸= d

and x′′
h = h such that x ≻h x′′ ≻h x′. Similarly, preferences of doctor d are

hospital-lexicographic if, for any two acceptable contracts x, x′ ∈ X where xd =
x′

d = d and xh = x′
h = h, there is no contract x′′ with x′′

d = d and x′′
h ̸= h such

that x ≻d x′′ ≻d x′. For convenience, we say that the preferences of an agent
18See Theorem 2.27 of Roth and Sotomayor (1992).

16



a ∈ D ∪ H are agent-lexicographic if, for a ∈ D, the preferences ≻a are hospital-
lexicographic, and for a ∈ H, the preferences ≻a are doctor-lexicographic. We
denote by ≻−a≡ (≻a′)a′∈D∪H\{a} the preference profile of all agents other than a.

When all agents have lexicographic preferences, terms serve as secondary crite-
ria, with the primary focus being the assignment of doctors to hospitals. In these
markets, the addition or withdrawal of terms for specific hospitals does not alter
the assignment of doctors to hospitals in the doctor-optimal stable allocation.19

We introduce a notation to denote the set of doctors assigned to h under allocation
X, that is Dh(X) ≡ {d ∈ D : x ∈ Xh and xd = d}.

Lemma 1. Let π(T ) ∈ Π be a problem where each agent a ∈ D ∪ H has agent-
lexicographic preferences. Then, for any π(T ′) ∈ Π̃(π(T )) we have for each h ∈
H, Dh(X) = Dh(X ′).

This follows immediately since for each h ∈ H, T ′
h is non-empty. Thus, we

omit the proof. The following result establishes that if at least one agent (doctor
or hospital) does not have agent-lexicographic preferences, it is always possible to
construct a preference profile for the other agents, where all agents have agent-
lexicographic preferences, such that adding available terms will reduce the welfare
of some doctors.

Theorem 3. If ≻a are not agent-lexicographic for a ∈ D ∪ H, then, there exist
≻−a such that for each a′ ∈ D ∪ H \ {a}, ≻a′ are agent-lexicographic, and a
sub-problem π(T ′) ∈ Π̃(π(T )), where for some d ∈ D, X

′
d ≻d Xd.

Lexicographic preferences for all agents impose restrictive conditions. When
terms represent salaries, agent-lexicographic preferences imply that doctors are
willing to work for any salary (potentially negative), and hospitals are willing to
offer any salary (even excessively high) to a doctor rather than engaging another.
Such conditions are rarely observed in practice. This implies that welfare reduc-
tions when terms are added may occur in any market where at least one agent
does not have lexicographic preferences.

19In this context, the market can be viewed as one without contracts. To determine the
doctor-optimal stable allocation, each doctor selects her preferred terms from those offered by
the hospital to which she is assigned.
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In the remainder of this section, we relax the constraint by considering only
markets where hospitals have doctor-lexicographic preferences. Example 4 illus-
trates the additional conditions that need to be imposed to prevent a reduction
in well-being.

Example 4. Consider a problem where D = {d1, d2}, H = {h1, h2} and T =
{t, t′}. The vector of terms is given by T ′ = (T ′

h1 = {t}, T ′
h2 = {t}) and Th1 =

{t, t′}. Contracts are substitutes for hospitals, and hospitals’ preferences are
doctor-lexicographic:

Doctor
d1 (h1, t′) (h2, t) (h1, t)
d2 (h1, t) (h1, t′) (h2, t)

Table 7: Preference profile of doctors

Hospital
h1 (d1, t) (d1, t′) (d2, t′) (d2, t)
h2 (d1, t) (d2, t)

Table 8: Preference profile of hospitals

Consider the sub-problem π(T ′) and the problem π(Th1 , T ′
−h1). The doctor-

optimal stable allocations are given by X
′ and X respectively:

X
′ = {(d2, h1, t), (d1, h2, t)}, X = {(d1, h1, t′), (d2, h2, t)}.

The added term is used by doctor d1, who strictly prefers X to X
′, while

d2 strictly prefers X
′ to X.20 Intuitively, when hospital preferences are doctor-

lexicographic, offering new terms can attract new doctors (doctor d1 in Example
4), while replacing others who are now worse off (doctor d2 in Example 4). Based
on this observation, it is clear that if the set of doctors employed by hospital h

20Note that X
′ and X are Pareto efficient. Pakzad-Hurson (2023) examines the connection

between efficiency and stability, identifying acyclicity and student-lexicographic preferences as
the necessary and sufficient conditions for the existence of a stable and Pareto efficient allocation.
In our framework, the latter corresponds to doctor-lexicographic preferences. In Example 4,
hospital preferences are doctor-lexicographic and homogeneous. Even when imposing conditions
on cycles in hospital preferences, adding terms can reduce doctors’ welfare.
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remains unchanged between X and X
′, no doctor will be worse off.21 The following

proposition formalizes this point.

Proposition 2. For any problem π(T ) ∈ Π where each hospital has doctor-
lexicographic preferences, consider h ∈ H, T ′

h ⊂ Th and the sub-problem π(T ′
h, T−h).

(i) If Dh(X) = Dh(X ′), then there is no d ∈ D such that X
′
d ≻d Xd.

(ii) If for a term t ∈ Th \ T ′
h there exists x ∈ Xh, such that xt = t, then

there exists a non-empty subset of doctors D′ ⊂ D such that for each d′ ∈
D′, Xd′ ≻d′ X

′
d′ .

Proposition 2 states that for any problem where hospitals have doctor-lexicographic
preferences, if the set of available terms for a hospital h is reduced and (i) the
set of doctors assigned to h remains unchanged after the reduction, no doctor is
better off. The symmetric interpretation is that if the set of terms is extended
for hospital h and the set of doctors assigned to h is the same, then no doctor
is worse off. This is related to part (i) of Proposition 1. Additionally, (ii) if at
least one withdrawn term was previously used, some doctors will strictly prefer
the original doctor-optimal stable allocation. Symmetrically, if one of the added
terms is used, then at least one doctor is (strictly) better off. This is related to
part (ii) of Proposition 1. Lemma 1, Theorem 3 and Proposition 2 (i) together
provide the condition, in the maximal domain sense, that prevents the decrease
in well-being when terms are added for some hospitals.

4.2 Common and Polarized Preferences

We now discuss common and polarized preferences for doctors and hospitals. A
direct application of this domain is salaries, as illustrated in Examples 1 and 2.
Doctors prefer higher salaries from a given hospital, while hospitals prefer to offer
lower salaries to doctors.

We denote t ≫D t′ if, for a given hospital h ∈ H, for each d ∈ D, (h, t) ≻d

(h, t′). We use the symmetric notation t ≫H t′ for hospitals to indicate that for a
given doctor d ∈ D, for each hospital h ∈ H, (d, t) ≻h (d, t′). We say that doctors’

21Note that we do not impose any restrictions on the ranking of doctors for a given term. In
Example 4, hospital h1 prefers term t′ to term t for doctor d1 and term t to term t′ for doctor
d2. Imposing the same ranking of terms for all doctors does not alter the results.
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preferences are common if, for any t, t′ ∈ T , with t ̸= t′, and any h ∈ H we have
t ≫D t′. Similarly, hospitals’ preferences are common if, for any t, t′ ∈ T , with
t ̸= t′, and for any d ∈ D, we have t ≫H t′. The preferences of doctors and
hospitals are common and polarized if, for any t, t′ ∈ T , with t ̸= t′, t ≫D t′ if and
only if t′ ≫H t. We say that the term t is preferred over t′ by doctors (hospitals)
if doctors’ (hospitals’) preferences are common and t ≫D t′ (t ≫H t′).

Example 2 illustrates that even if an added term is used, the doctor who uses
it may be worse off. To address this, we impose a stronger condition to ensure
that when terms preferred by doctors are added, if any added term is used, some
doctors will be better off. This condition requires that the set of doctors employed
by h remains unchanged when the set of terms offered by h is extended.

Proposition 3. For any problem π(T ) ∈ Π such that the preferences of doctors
and hospitals are common and polarized, consider h ∈ H, T ′

h ⊂ Th and the sub-
problem π(T ′

h, T−h). Then, if
(i) there exists a term t ∈ Th \ T ′

h and a contract x ∈ Xh such that xt = t,
(ii) Dh(X) = Dh(X ′), and
(iii) each t ∈ Th \ T ′

h is preferred by doctors to any t′ ∈ T ′
h,

there is no d ∈ D such that X
′
d ≻d Xd and there exists a non-empty subset of

doctors D′ ⊂ D such that for each d ∈ D′, Xd ≻d X
′
d.

Proposition 3 states that if the preferences of hospitals and doctors are common
and polarized, then when preferred terms are added and at least one of these
terms is used in the doctor-optimal stable allocation, if the set of doctors hired by
h remains unchanged, some doctors strictly prefer the new doctor-optimal stable
allocation, and no doctor is worse off. The same reasoning applies symmetrically
when considering the withdrawal of terms.

In Example 1, conditions (ii) and (iii) are satisfied, but not (i). In Example 2,
conditions (i) and (iii) are satisfied, but not (ii). The key point is that the added
terms are preferred over the currently available terms. By assumption, for each
h ∈ H, T ′

h ̸= ∅. Therefore, if the set of doctors assigned to h remains unchanged,
it implies that at least one doctor has a preferred contract with h. Assuming that
contracts are substitutable for hospitals, no doctor is worse off.
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However, preference polarization is crucial to prevent a reduction in doctors’
welfare. Example 5 illustrates that when preferences are common but not polar-
ized, extending the set of available terms can reduce doctors’ welfare, even if the
conditions identified in Proposition 3 are satisfied.22

Example 5. Consider a problem where D = {d1, d2}, H = {h1} and T =
{t, t′, t′′}. The vectors of terms are given by T ′ = (T ′

h1) = ({t, t′′}) and T =
(Th1) = ({t, t′, t′′}). Contracts are substitutes for the hospital, and the prefer-
ences of both the hospital and the doctors are common:

Doctor
d1 (h1, t′) (h1, t′′) (h1, t)
d2 (h1, t′) (h1, t′′) (h1, t)

Table 9: Preference profile of doctors

Hospital
h1 (d1, t) ((d1, t′), (d2, t)) (d1, t′) (d2, t) (d2, t′) ((d1, t′′), (d2, t′′)) (d1, t′′) (d2, t′′)

Table 10: Preference profile of hospital h1

The preferences for the terms are as follows: t′ ≫D t′′ ≫D t and t ≫H t′ ≫H

t′′. Consider the sub-problem π(T ′) and the problem π(T ). The doctor-optimal
stable allocations are given by X

′ and X respectively:

X
′ = {(d1, h1, t′′), (d2, h1, t′′)}, X = {(d1, h1, t′), (d2, h1, t)}.

Doctor d1 prefers Xd1 over X
′
d1 , while doctor d2 prefers X

′
d2 over Xd2 . The

added term t′ is preferred by doctors over the currently available terms (i.e., t and
t′′), t′ is used by d1, and the set of doctors assigned to h1 remains the same.

Proposition 4. For any problem π(T ) ∈ Π where the preferences of doctors and
hospitals are common, consider h ∈ H, T ′

h ⊂ Th and the sub-problem π(T ′
h, T−h).

Then, if
(i) there exists a term t ∈ Th \ T ′

h and a contract x ∈ Xh such that xt = t,
(ii) Dh(X) = Dh(X ′), and

22Example 5 also illustrates the proof of Proposition 3.
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(iii) each t ∈ Th \ T ′
h is preferred by doctors to any t′ ∈ T ′

h,
there exists a non-empty subset of doctors D′ ⊂ D such that for each d ∈
D′, Xd ≻d X

′
d.23

Thus, the common preferences of hospitals and doctors ensure that when the
conditions are met, at least one doctor is better off. However, other doctors may
be worse off.

5 Hospital Incentives

Thus far, we have not considered hospitals’ preferences regarding allocations,
which may play a crucial role in their incentives to offer terms. Referring to
Proposition 3 and the framework of common and polarized preferences, when the
conditions are satisfied, the interpretation is as follows: Doctors prefer terms that
are less favorable to hospitals. Hospital h offers such terms and continues to em-
ploy the same doctors. Since at least one of these terms is used, and given the
substitutability of contracts for hospitals, it follows directly that h will be worse
off. The following proposition formalizes the impact of offering additional terms
on hospitals’ preferences under the hospital-optimal stable allocation.

Proposition 5. For any problem π(T ) ∈ Π, consider h ∈ H, T ′
h ⊂ Th and the

sub-problem π(T ′
h, T−h), then Xh ⪰h X ′

h. Furthermore, if for a term t ∈ Th \ T ′
h

there exists x ∈ Xh, xt = t, then Xh ≻h X ′
h.

Proposition 5 states that when a hospital h extends the set of terms it offers, it
weakly prefers the new hospital-optimal stable allocation to the former one. The
preference is strict if one of the added terms is used. Consequently, if a mecha-
nism produces the hospital-optimal stable allocation, hospitals have an incentive
to extend the set of terms they offer. Note, however, that this analysis does not
consider the impact of adding terms on other hospitals’ preferences or their incen-
tives to offer terms. Roth (1985) demonstrates that hospitals can cooperate by
misreporting their preferences to achieve a preferred allocation. In contrast, we

23The proof of Proposition 4 directly follows from the proof of Proposition 3.
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show that by offering additional terms, hospitals can achieve a preferred alloca-
tion without the need for cooperation. Regarding the impact on other hospitals’
preferences, three cases are possible. Consider a hospital h′ ∈ H \ {h} under the
sub-problem π(T ′

h, T−h) and the problem π(T ):
• Case 1: Xh′ ≻h′ X ′

h′ . For instance, the set of doctors employed by h may dif-
fer, and some doctors previously employed by h in X ′

h may now be available
to work for h′. The contracts associated with these doctors are preferred by
h′ over those in Xh′ .

• Case 2: X ′
h′ ≻h′ Xh′ . For instance, an allocation containing a contract

using an added term may block the allocation of h′ in π(T ). Alternatively,
doctors in Dh′(X ′) may now be included in Dh(X); in other words, a doctor
previously hired by h′ is now hired by h.

• Case 3: Xh′ = X ′
h′ . The allocation of h′ is unchanged.

In some markets, agents’ preferences are determined by external factors, such
as laws or regulations. For example, priorities are considered instead of preferences
in school choice or in the approach by Sönmez and Switzer (2013). While these
priorities are fixed, schools may offer additional terms to attract better students.24

By fixing preferences, we explore the potential for hospitals to manipulate their
reported sets of available terms.

We define a strategy with fixed preferences for a hospital h as reporting a set
of available terms Th ⊆ T . Hospital strategies naturally extend to the vector of
available terms T . A mechanism φ is term strategy-proof if, for each π(T ) ∈ Π,
no hospital h ∈ H and T̂h ̸= Th exist such that φ(π(T̂h, T−h)) ≻h φ(π(T )).

Proposition 6. Suppose that for each hospital h, preferences ≻h are fixed. The
COP is not term strategy-proof.

When a hospital does not offer a term, this can be interpreted as making all
contracts associated with that term unacceptable to the hospital. However, the
key difference is that by offering certain terms, hospitals can achieve a preferred
allocation even without using those terms. For instance, in Example 1, h1 offers
a salary of 110, does not use it, but achieves a preferred allocation.

24For example, military branches may offer alternative durations of service to recruit higher-
quality cadets. Although Sönmez and Switzer (2013) considers only two possible terms, branches
might have an incentive to offer more options.
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6 Conclusion

In allocation problems without contracts, offering more alternatives benefits one
side of the market. However, we show that when hospitals offer additional contract
terms to doctors, it can reduce doctors’ welfare. By analyzing the impact of adding
terms, we demonstrate that reducing doctors’ alternatives either improves welfare
or preserves the doctor-optimal stable allocation. This highlights the need for
regulation in the design of terms offered by hospitals.

We identify conditions on agents’ preferences that prevent welfare reductions
when terms are added, showing that preferences must be agent-lexicographic in
the maximal domain sense. This result implies that welfare reductions can occur
in many markets. Specifically, in the job market, where terms often represent
salaries, we identify the conditions necessary to avoid reducing doctors’ welfare.
However, when these conditions are satisfied, the hospital offering new terms is
worse off. We then study the incentives for hospitals to offer terms and show that
when a mechanism leads to the hospital-optimal stable allocation, hospitals are
incentivized to expand the set of terms they offer. In addition, even when hospital
preferences are fixed, such manipulation remains possible.

Future research could explore hospital strategies under alternative stable al-
locations. Another approach would be to study the conditions or structure of
vectors of terms that reduce the set of stable allocations to a singleton, potentially
the hospital-optimal stable allocation. Our contribution also motivates empirical
applications by assessing the welfare impact of adding terms.

A Additional Results

A.1 Decomposition of Stable Allocations Set

This section offers additional insights into the structure of the stable allocation
set. As highlighted in Section 3.1 and Theorem 1, adding terms can render some
allocations unstable. Theorem 4 identifies a condition that ensures stability. We
introduce a specific constraint that limits the number of terms that can be used.
Let U(π(T )) ≡ {X : X ∈ F(π(T )) for each h ∈ H, for any x, x′ ∈ Xh, xt = x′

t}
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denote the constraint that limits each hospital to using only one term. This
constraint applies, for example, when regulations require hospitals to adopt a
uniform term, such as identical salaries for all doctors. Additionally, let A(π(T )) ≡
{X : X ∈ F(π(T )) for each h ∈ H, Xh ≻h ∅} represent the set of allocations
acceptable to hospitals.

Theorem 4 states that if, for every acceptable allocation, each hospital uses
at most one term (i.e., A(π(T )) ⊆ U(π(T ))), the set of stable allocations can be
decomposed as follows: For any problem π(T ), S(π(T )) is the intersection, for
each h ∈ H, of the union of each term in Th, fixing the set of available terms for
other hospitals T−h.

Theorem 4. Suppose π(T ) ∈ Π is a problem such that A(π(T )) ⊆ U(π(T )).
Then,

S(π(T )) =
⋂

h∈H

 ⋃
t∈Th

S(π({t}, T−h))
 .

The condition imposed by Theorem 4 is naturally satisfied in scenarios where
each hospital is restricted to using a single term or where hospitals can only em-
ploy one doctor. By decomposing the set of stable allocations into sub-problems,
it becomes possible to verify whether any stable allocation remains stable as ad-
ditional terms are introduced. To illustrate Theorem 4, consider problem π(T )
in Example 1 where T = (Th1 = {90, 100, 110}, Th2 = {100}). Then S(π(T )) =
S(π({90}, T−h1)) ∪ S(π({100}, T−h1)) ∪ S(π({110}, T−h1)) ∩ S(π({100}, T−h2)).

A.2 Modification of the Doctor-Optimal Stable Allocation

In this section, we establish a result concerning doctor-optimal stable allocations
when the set of available terms is modified for a single hospital. Proposition 7
states that if the doctor-optimal stable allocation of h is the same in π(T ) and
π(T ′

h, T−h), then the doctor-optimal stable allocation remains the same for all
agents in the market.

Proposition 7. For any problem π(T ) ∈ Π, consider a sub-problem π(T ′
h, T−h) ∈

Π̃(π(T )). If Xh = X
′
h then X = X

′.
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As discussed in Section 5, hospitals’ incentives to offer terms are pivotal to
doctors’ welfare. Proposition 7 highlights that when the allocation of a hospital
h is unaffected by a modification of terms, the allocation in the market remains
unchanged.

B Proofs

B.1 Proof of Proposition 1

Proof. For the first part of (i) in Proposition 1, and (ii) we use Example 2. We
use strict preference and stability for the second part of (i). We know that there
exists some d′ ∈ D′ such that X

′
d′ ≻d′ Xd′ . Suppose, by contradiction, that for

each h where X
′
d′ = (d′, h, t), we have X

′
h ≻h Xh or Xh = X

′
h. Using strict

preference, we know that X
′
h ̸= Xh because X

′
d′ ≻d′ Xd′ . We use the definition

of stability to show that X
′
h cannot be preferred by h to Xh. If d′ and h prefer

X
′ to X, then X is not stable because there exists a contract x = (d′, h, t) that

block X. Therefore, Xh ≻h X
′
h. ■

B.2 Proof of Theorem 1

Proof. (i) Consider an allocation X ∈ S(π(T )) such that X ∈ F(π(T ′)); Suppose,
by contradiction, that X /∈ S(π(T ′)). Let X ′ denote the allocation that blocks X

in π(T ′) with X ̸= X ′, such that for each h ∈ H, we have X ′
h ⊂ Ch(X ′ ∪ X). By

construction of T ′, we know that X ′ ∈ F(π(T )) and that contracts are substitutes
for hospitals. Since X ′ blocks X in π(T ′), X ′ also blocks X in π(T ) because there
is no x such that x /∈ Ch(X ′) and x ∈ Ch(X ′ ∪X) for some h. Then, X /∈ S(π(T )),
leading to a contradiction.

Before proving (ii), we introduce Lemma 2. The intuition behind Lemma 2 is
that if an allocation is no longer stable when terms are added, then among the
added terms, some are used in an allocation that blocks the stable allocation.

Lemma 2. Suppose π(T ′) is a sub-problem of π(T ) such that X ′ ∈ S(π(T ′)) and
X ′ /∈ S(π(T )). Then there exists x ∈ X with X ∈ F(π(T )) such that xt ∈ Txh

\T ′
xh

and x ≻xd
X ′

xd
and Xxh

≻xh
X ′

xh
.
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Proof. To prove Lemma 2, we consider the stability definition, the construction of
π(T ) and π(T ′), and that contracts are substitutes for hospitals. By construction,
we know that an allocation blocks X ′ in the problem π(T ). We denote this
allocation X. Suppose that for each contract x ∈ X, there exists h ∈ H such
that xt ∈ T ′

h. Because contracts are substitutes for hospitals, these contracts are
also chosen in π(T ′), and X ′ is not stable in π(T ′). Then, there exists a term t ∈
Txh

\T ′
xh

which is used by at least one contract in X; otherwise, X ′ /∈ S(π(T ′)). ■

(ii) By contradiction, suppose there exists X ∈ S(π(T ′)) ∩ S(π(T ′′)) and X /∈
S(π(T ′ ∪T ′′)). By stability, there exists X ′ ∈ F(π(T ′ ∪T ′′)) and X ′ /∈ (F(π(T ′))∪
F(π(T ′′))); otherwise, X would not be stable in π(T ′) and π(T ′′) by Lemma
2. We have to show that there is no blocking set of contracts X ′ which could
involve terms from both T ′ \ T ′′ and T ′′ \ T ′. Suppose x′, x′′ ∈ X such that
x′

t ∈ T ′
x′

h
\ T ′′

x′
h

and x′′
t ∈ T ′′

x′′
h

\ T ′
x′′

h
. Since contracts are substitutes for hospitals,

which rules out complementarity between contracts, the contradiction is direct:
x′ /∈ Cx′

h
(Xx′

h
∪ {x′}) implies x′ /∈ Cx′

h
(Xx′

h
∪ {x′, x′′}) and x′′ /∈ Cx′′

h
(Xx′′

h
∪ {x′′})

implies x′′ /∈ Cx′′
h
(Xx′′

h
∪ {x′′, x′}). Thus, X ∈ S(π(T ′ ∪ T ′′)). ■

B.3 Proof of Theorem 2

We use the construction of the COP to prove Theorem 2. We denote by Rd(X) ≡
X − Cd(X) the set of contracts rejected by d from X. We denote by Rh(X ′) ≡
X ′ − Ch(X ′) the set of contracts rejected by h from X ′.

Cumulative Offer Process.

Step 0. Consider problem π(T ). For each d ∈ D, let Xd(0) ≡ (Xd ∩F(π(T )))∪
{∅} be the set of contracts available for d.

Step s ≥ 1. Each d ∈ D chooses a contract from Xd(s − 1) using Cd(·). Let
xd(s) ≡ Cd(Xd(s − 1)) be the chosen contract. Let X(s) ≡ ⋃

d∈D Cd(Xd(s − 1))
be the set of all chosen contracts. Each doctor d proposes to hospital xd(s)h

contract xd(s). For each h ∈ H, let Xh(s) ≡ {xd(s) ∈ X(s) : xd(s)h = h} be
the set of contracts proposed to h. Each hospital h chooses contracts from Xh(s)
using Ch(·). Let R(s) be rejected contract set in Step s. If R(s) = ∅, then stop.
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Otherwise, for each d ∈ D, with xd(s) ∈ R(s), we let Xd(s) ≡ Xd(s − 1) \ {xd(s)}
and for each d ∈ D such that xd(s) /∈ R(s), we let Xd(s) ≡ Xd(s−1), and proceed
to Step s+1.

The algorithm continues until Step k, where R(k) = ∅. The final allocation is
the doctor-optimal stable allocation X under the vector of terms T . Since there are
finitely many doctors, hospitals, and possible contracts for each doctor-hospital
pair, the COP terminates in a finite number of steps.

Proof. Suppose there exists T ′ ⊂ T such that X
′
d ≻d Xd for each d ∈ D. Since

X
′ ∈ S(π(T ′)), we know from Lemma 2 that some terms in Th \ T ′

h are used in
a blocking allocation that blocks X

′ in π(T ). Given that preferences are strict,
contracts are substitutes for hospitals, and using the construction of the COP:
From Theorem 3 (b) of Hatfield and Milgrom (2005), we know that the COP
converges monotonically to the highest fixed point (i.e., X). Let COPs(π(T ))
denote the step s of the COP in problem π(T ). We know that at some step
s, COPs(π(T )) = X

′. Since X
′ is an allocation, the COP stops at step s, and

X
′ is the doctor-optimal stable allocation of problem π(T ). Renegotiation is

unnecessary. Therefore, X
′ = X, which concludes the proof. ■

B.4 Proof of Theorem 3

Proof. By definition of lexicographic preferences, if a hospital h does not have
lexicographic preferences, then we have |Th| ≥ 2 and |D| ≥ 2. Symmetrically,
if a doctor d does not have lexicographic preferences, then there exists at least
one hospital h such that |Th| ≥ 2 and |H| ≥ 2. We may limit attention to the
case with exactly two doctors and one hospital by specifying that doctors find the
other hospitals to be unacceptable.
(i) Suppose ≻h is not doctor-lexicographic, and there exist some x, x′, y, y′ ∈ X ,
with x = (d1, h, t), x′ = (d1, h, t′), y = (d2, h, t) and y′ = (d2, h, t′). We consider
four cases:

• Case 1: ≻h: x ≻h y ≻h x′ ≻h y′. Consider ≻d1 : x′ ≻d1 x ≻d1 ∅ and ≻d2 :
y ≻d2 y′ ≻d2 ∅. Let Th = {t, t′} and T ′

h = {t′}. Since Ch({x′, y′}) = {x′}, it
follows that X

′
d1 = {x′}. Similarly, Ch({x′, y}) = {y} and Ch({x′, y, x}) =

{x}, we have that Xd1 = {x}. Therefore, X
′
d1 ≻d1 Xd1 .
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• Case 2: ≻h: x′ ≻h y ≻h x ≻h y′. Consider ≻d1 : x ≻d1 x′ ≻d1 ∅ and
≻d2 : y ≻d2 y′ ≻d2 ∅. Let Th = {t, t′} and T ′

h = {t}. Since Ch({x, y}) = {y},
it follows that X

′
d2 = {y}. Similarly, Ch({x, y}) = {y} and Ch({x′, y, x}) =

{x′}, we have that Xd2 = {∅}. Therefore, X
′
d2 ≻d2 Xd2 .

• Case 3: ≻h: x ≻h y ≻h y′ ≻h x′. Consider ≻d1 : x ≻d1 x′ ≻d1 ∅ and ≻d2 :
y′ ≻d2 y ≻d2 ∅. Let Th = {t, t′} and T ′

h = {t′}. Since Ch({x′, y′}) = {y′}, it
follows that X

′
d2 = {y′}. Similarly, Ch({x, y′}) = {x} and Ch({x, y, y′}) =

{x}, we have that Xd2 = {∅}. Therefore, X
′
d2 ≻d2 Xd2 .

• Case 4: ≻h: x ≻h y′ ≻h y ≻h x′. Consider ≻d1 : x ≻d1 x′ ≻d1 ∅ and ≻d2 :
y′ ≻d2 y ≻d2 ∅. Let Th = {t, t′} and T ′

h = {t′}. Since Ch({x′, y′}) = {y′}, it
follows that X

′
d2 = {y′}. Similarly, Ch({x, y′}) = {x} and Ch({x, y, y′}) =

{x}, we have that Xd2 = {∅}. Therefore, X
′
d2 ≻d2 Xd2 .

We omit symmetric cases where contracts are reversed (x instead of x′, and y

instead of y′) and cases where doctors are reversed (d1 instead of d2). This con-
cludes the proof.
(ii) Suppose ≻d1 is not hospital-lexicographic, this implies that there exist h1, h2 ∈
H, with h1 ̸= h2. Further, suppose that there exist some x1, x′

1, x2, y1, y′
1, y2 ∈

X , with x1 = (d1, h1, t), x′
1 = (d1, h1, t′), x2 = (d1, h2, t), y1 = (d2, h1, t), y′

1 =
(d2, h1, t′) and y2 = (d2, h2, t). We consider two cases:

• Case 1: ≻d1 : x1 ≻d1 x2 ≻d1 x′
1 ≻d1 ∅. Consider ≻d2 : y′

1 ≻d2 y1 ≻d2 y2 ≻d2

∅, ≻h1 : x1 ≻h1 x′
1 ≻h1 y1 ≻h1 y′

1, and h2, which accepts all the contracts it
receives. Let Th1 = {t, t′} and T ′

h1 = {t′}. Since Ch1({y′
1}) = {y′

1}, it follows
that X

′
d2 = {y′

1}. Similarly, Ch({x1, y′
1}) = {x1} and Ch({x1, y1, y′

1}) =
{x1}, we have that Xd2 = {y2}. Therefore, X

′
d2 ≻d2 Xd2 .

• Case 2: ≻d1 : x′
1 ≻d1 x2 ≻d1 x1 ≻d1 ∅. Consider ≻d2 : y′

1 ≻d2 y1 ≻d2 y2 ≻d2

∅, ≻h1 : x1 ≻h1 x′
1 ≻h1 y1 ≻h1 y′

1, and h2, which accepts all the contracts it
receives. Let Th1 = {t, t′} and T ′

h1 = {t}. Since Ch1({y1}) = {y1}, it follows
that X

′
d2 = {y1}. Similarly, Ch({x′

1, y′
1}) = {x′

1} and Ch({x′
1, y1, y′

1}) =
{x′

1}, we have that Xd2 = {y2}. Therefore, X
′
d2 ≻d2 Xd2 .

We omit symmetric cases where contracts are reversed (x1 instead of x′
1, and y1

instead of y′
1). This concludes the proof. ■
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B.5 Proof of Proposition 2

Proof. Consider T and T ′ such that for each h′ ∈ H \ {h}, Th′ = T ′
h′ and for

h, T ′
h ⊂ Th. Knowing that hospital preferences are doctor-lexicographic:

(i) Suppose by contradiction that Dh(X) = Dh(X ′) and there exists d ∈ D

such that Xd ≻d X
′
d. We have two cases:

• Case (i)-1: d is employed by h in both X and X
′. Considering the

doctor-lexicographic preferences of h and the substitutability of con-
tracts, it is direct that no contract x′ concerns doctor x′

d = d′ that
blocks X

′
d. Since X is the doctor-optimal stable allocation, we know

that Xd ≻d X
′
d; otherwise, d would not be assigned to h in X, contra-

dicting Dh(X) = Dh(X ′).
• Case (i)-2: d is not employed by h in X and X

′. This means that an
allocation blocks X

′ by adding terms to T ′
h. In the COP, this implies

that doctors have been rejected from h and d was then rejected by the
hospital that employed her in X

′. To be rejected from h there must
exist a doctor preferred by h who is employed. This contradicts the
doctor-lexicographic preferences and Dh(X) = Dh(X ′).

(ii) Suppose by contradiction that t is used and there is no doctor d such that
Xd ≻d X

′
d. Consider t ∈ Th \ T ′

h such that x ∈ X with xt = t and xd = d.
We know that no contract blocks X

′
d under T ′ while X

′ is blocked under
(Th, T ′

−h). By assumption, d is hired by h under X. We have two cases:
• Case (ii)-1: d is hired by h under X

′. Then, using doctor-lexicographic
preferences, we know that h continues to hire d. Contracts are substi-
tutable, and X

′
d is not blocked. Considering the doctor-optimal stable

allocation, the choice of d reflects her preferred term in Th. Since the
preferences are strict and the term used is different, we have Xd ≻d X

′
d.

• Case (ii)-2: d is not hired by h under X
′. This implies that new

contracts are blocking X ′
d. The contradiction is straightforward since

new contracts are only added for h. We know that Xd ≻d X
′
d.

These two contradictions conclude the proof. ■
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B.6 Proof of Proposition 3

Proof. Let π(T ) ∈ Π be a problem such that the preferences of doctors and
hospitals are common and polarized. Without loss of generality, fix a sub-problem
π(T ′

h, T−h) ∈ Π̃(π(T )) such that T ′ ⊂ T , there exists t ∈ Th \ T ′
h and a contract

x ∈ Xh such that xt = t, Dh(X) = Dh(X ′), and each t ∈ Th \ T ′
h is preferred

by doctors to any t′ ∈ T ′
h. Since Dh(X) = Dh(X ′), added terms are preferred by

doctors, and at least one added term is used, it is direct that there exists d ∈ D

such that Xd ≻ X
′
d. It remains to show that there is no doctor d such that

X
′
d ≻ Xd.

By contradiction, suppose there exists d ∈ D such that X
′
d ≻ Xd. It is

straightforward that d ∈ Dh(X) otherwise X
′
d is not stable in π(T ′

h, T−h). Since
the terms that are added are preferred by doctors, we know that for each t ∈
Th \ T ′

h, (h, t) ≻d X
′
d. By construction of the COP we know that d proposed all

the contracts using the terms in Th \ T ′
h to h and the contracts were rejected by

h. X
′
d is also rejected by h since X

′
d ≻ Xd. Among the other contracts proposed

by the other doctors at h, there exists an allocation X such that Ch(X ∪ X
′) = X

and X ⊂ CD(X ∪ X
′), thus X ≻h X

′. We know that there exists a doctor d′ such
that Xd ≻′

d X
′
d therefore X

′
h ≻h Xh, as preferences are common and polarized,

this contradicts that X ≻h X
′
h.

■

B.7 Proof of Proposition 5

Proof. We prove the result by contradiction. Suppose X ′
h ≻h Xh. Note that h

offers more terms in π(Th, T ′
−h) than in π(T ′). Since X ′

h ≻h Xh, we know that
Ch(X ′ ∪ X ′′) = X ′′ in π(Th, T ′

−h), where X ′′ is an allocation. Since the terms
have only changed for h, hospital h offers a new term such that X ′ is blocked. By
definition of stability, X ′′

h is preferred to X ′
h by h. We have two cases:

• Case 1: X ′′ is not stable. In this case, another allocation blocks X ′′. By
the lattice structure (Theorem 0), the hospital-optimal stable allocation is
at least as preferred by h as Xh.

• Case 2: X ′′ is stable. Using the lattice structure, we know that hospitals
unanimously prefer X ′′ to any other stable allocation. Therefore, X ′′

h = Xh,

31



implying Xh ⪰h X ′
h.

By the lattice structure and considering that h is the only hospital offering new
terms, it directly follows that if an added term is used, then the preference is
strict. ■

B.8 Proof of Theorem 4

Proof. We prove this result in two steps:

Claim 1. If A(π(T )) ⊆ U(π(T )), then ⋂
h∈H

(⋃
t∈Th

S(π({t}, T−h))
)

⊆ S(π(T )).

Proof. By contradiction, suppose that there exists an allocation X such that
• X ∈ ⋂

h∈H

(⋃
t∈Th

S(π({t}, T−h))
)
, and

• X /∈ S(π(T )).
Since X /∈ S(π(T )), there exists an allocation X ′ that blocks X in π(T ). Specif-
ically, there exists h such that Ch(X ′ ∪ X) = X ′ and X ′ ⊆ CD(X ′ ∪ X). If
X ′ ∈ F(π(T ))\A(π(T )), then there exists h ∈ H such that ∅ ≻h X ′

h, meaning X ′

does not block X. However, by definition of acceptable allocation, X ′ ∈ A(π(T )).
Since A(π(T )) ⊆ U(π(T )), all acceptable allocations in π(T ) are also acceptable
in ⋃

t∈Th
S(π({t}, T−h)). Therefore, X ′ does not block X. Thus X ∈ S(π(T )),

leading to a contradiction. ■

Claim 2. If A(π(T )) ⊆ U(π(T )), then S(π(T )) ⊆ ⋂
h∈H

(⋃
t∈Th

S(π({t}, T−h))
)
.

Proof. By contradiction, suppose that there exists and allocation X such that
• X ∈ S(π(T )), and
• X /∈ ⋂

h∈H

(⋃
t∈Th

S(π({t}, T−h))
)
.

This implies that there exists at least one hospital h for which

X /∈
⋃

t∈Th

S(π({t}, T−h)).

By construction, all acceptable allocations in π(T ) are also acceptable in

⋃
t∈Th

S(π({t}, T−h)).

This contradict Theorem 1 (ii), implying that X ∈ ⋃
t∈Th

S(π({t}, T−h)). ■
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Together, Claim 1 and 2 complete the proof. ■

B.9 Proof of Proposition 7

Proof. We proceed by contradiction. Suppose Xh = X
′
h and X ̸= X

′. The
difference between the two problems is that additional terms have been introduced
exclusively for hospital h. Since Xh = X

′
h, even if other doctors are tentatively

assigned to h with a new term, these doctors are subsequently rejected in later
steps of the COP. Upon being rejected, these doctors propose their next contracts
according to their preferences, and the allocation converges to the same outcome
as before. ■
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