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Affirmative Action with Overlapping Reserves: Equity,

Fairness, and Complementarity*

Cyril Rouaultf

Abstract

Affirmative action policies, by establishing representation thresholds for pro-
tected groups, seek to balance fairness and equity in various assignment problems.
Fairness is maintained by prioritizing individuals based on merit scores, while equity
is ensured through guaranteed group representation. We focus on overlapping re-
serves, where individuals can belong to multiple groups, and introduce the Mazimal
Score and Minimum Guarantee (MSMG) choice rule, which upholds representation
requirements while preserving fairness. We define the score of an assignment as
the sum of the merit scores of the selected individuals. We demonstrate that the
assignment produced by the MSMG choice rule achieves the highest possible score
among all fair assignments that satisfy the given representation thresholds.

JEL Classification: C78, D47, D63.
Keywords: Matching; Affirmative action; Complementarity; Merit scores.

1 Introduction

Affirmative action policies are widely employed to address the inequalities faced by
disadvantaged groups, yet debates persist over how to balance fairness and equity in
their implementation. These groups, often defined by gender, ethnicity, or socioeco-
nomic statusEl benefit from policies implemented across various domains, including firm

composition, school admissions, government hiring, and legislative representation. A

*I am grateful to Olivier Bos, Tayfun Sénmez, and M. Utku Unver for their valuable comments.
tUniversité Paris-Saclay, ENS Paris-Saclay, CEPS. |[E-mail address: cyril.rouault@universite-paris-
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*The criteria are generally classified into two main categories: vertical and horizontal reservations.
Vertical reservations apply to historically disadvantaged groups requiring specific quotas (e.g., caste-
based or ethnic reservations), while horizontal reservations cut across all categories and apply to char-
acteristics such as disability, veteran status, or gender, ensuring representation within each vertical
category.
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common approach involves setting minimum representation thresholds. However, com-
plications arise when individuals belong to multiple groups—for instance, a worker with
a disability who is also a member of an ethnic minority. In such cases, individuals may
face disadvantages due to complementarities, as existing frameworks rarely account for
the intersection of different characteristics. This paper contributes to this discussion by
designing a choice rule that balances fairness and equity.

Two types of affirmative action policies enforcing representation thresholds are com-
monly implemented: over-and-above and minimum guarantee policies. Under the over-
and-above approach, reserved positions are allocated exclusively to eligible individuals.
If a candidate qualifies for an unreserved position based on merit (e.g., test score), their
assignment does not reduce the number of reserved seats. Conversely, in the minimum
guarantee approach, any assignment of a reserve-eligible candidate—whether based on
merit or through a reserved position—counts toward the required representation. When
individuals belong to only one group, the selection procedures in these policies differ pri-
marily in processing order: over-and-above policies allocate unreserved positions first,
followed by reserved positions (Dur et all [2018), while minimum guarantee policies as-
sign reserved positions first, then process unreserved positions (Echenique and Yenmez,
2015]).

However, when individuals qualify for multiple reserved groups, a fundamental ques-
tion arises: how should they be counted toward representation? Should they contribute
to all groups they belong to, or only one? The first approach is known as one-to-all re-
serve matching, while the second is referred to as one-to-one reserve matching (Sonmez
and Yenmez, [2020; Sonmez and Yenmez, 2022]).

This paper considers the minimum guarantee framework, where identical positions
are assigned to individualsEl Each individual is characterized by two attributes: traits
and scores. Traits determine the groups to which individuals belong, and an individual
may be associated with multiple groups. Minimum representation constraints are im-
posed following the one-to-all approach. Scores, on the other hand, reflect merit-based
criteria, such as a worker’s productivity in the labor market or a student’s academic
performance, as well as additional factors like financial need or scholarship eligibility.
These two attributes together form the basis for fairness criteria.

In the absence of reservations, assignment decisions are based solely on scores, with
fairness dictating that individuals with higher scores should be prioritized. However,
when minimum representation constraints are introduced, selection is no longer deter-

mined solely by scores, as individuals’ traits also influence the assignment process. Con-

2Since all positions are identical, we assume individuals are indifferent between them.



sequently, an individual with specific traits may be selected even if their score is lower
than that of another unselected individual who does not qualify for reserved positions.
When individuals can belong to multiple groups, assessing the fairness of an assignment
becomes challenging. [Sonmez and Yenmez (2019) propose a fairness notion in this con-
text, drawing on the concept of stability commonly used in the matching literatureEl In
an assignment, individual j justifiably envies individual i if (1) j is unassigned while i is
assigned (2) j possesses all the traits of ¢ (and possibly additional ones), and (3) j has a
higher score than 7. An assignment is considered fair if no individual justifiably envies
another.

When individuals can belong to multiple groups, complementarities emerge, compli-
cating market analysis and assignment decisions. The following example illustrates this

phenomenon and our approach.

Example 1. Consider five individuals w1, wil, m‘f,ml and mgy. Individuals w; and wf
are women, while individuals w{ and m{ are disabled. The score ranking over individuals

from the highest to the lowest is:
o(m1) > o(my) > o(mf) > o(w) > o(wd).

There are three available positions. Among the three selected individuals, at least one
must be a woman and at least one must be a disabled individual.

Under the minimum guarantee framework, and following the horizontal choice rule
introduced by [Sonmez and Yenmez| (2020), the disabled individual with the highest
score, mf, is selected first, followed by the woman with the highest score, wlﬁ With
these selections, the representation requirements are satisfied. The remaining position
is then assigned to the highest-scoring individual, m, resulting in the assignment p =
{my,m¢,wi}.

Now, consider an alternative assignment v = {mq, mo, wf}, which also satisfies the
representation constraints. Complementarity is clear in v, as mo is assigned only if wf
is also assigned. Both p and v are fair; however, they allocate positions differently, with
no clear ranking criterion to determine which assignment is preferable.

To address this, we introduce the notion of assignment score, defined as the sum of

the scores of the selected individuals. Suppose the scores are:

o(my) =100, o(mg) =90, o(md) =70, o(w)=060, o(w])=>55.

3Their notion is motivated by court orders in India.
4In this case, selecting the woman with the highest score before the disabled individual with the
highest score leads to the same final assignment.



The score of assignment p is m(p) = 230, while that of assignment v is m(v) = 245.
Since v achieves a higher total score, we say that it score-dominates assignment .
As previously mentioned, in the labor market, the score can represent an individual’s
productivityEl Therefore, assignment v leads to higher productivity than assignment
. Our main contribution is the design of the Maximal Score and Minimum Guarantee
(MSMG) choice rule, which, for any given set of individuals, produces an assignment

that is fair, satisfies the representation constraints, and maximizes the total score.

The MSMG choice rule consists of three distinct, ordered parts, constructing the
assignment while respecting the representation thresholds, which we refer to as require-
mentsﬂ Within each part, certain steps may be repeated. Part A begins by selecting
individuals with the highest scores while ensuring that sufficient capacity is preserved
to meet the representation requirements. This is analogous to the over-and-above rule,
but it also considers the traits of selected individuals and adjusts the reserved capac-
ities accordingly. Once no more individuals can be added without compromising the
representation thresholds, the MSMG rule proceeds to Part B. In this second part,
individuals are selected to balance the requirements across traits. Specifically, when
the requirements are imbalanced, the choice rule prioritizes individuals with the high-
est unmet requirement until the thresholds are equalizedﬂ Once the requirements are
equalized, the rule moves to Part C, where complementarities between individuals are
taken into account. This is done by forming pairs of individuals and comparing their
combined scores. The pair with the highest combined score is selected, and this process
continues until all positions are filled.

By accounting for complementarities, the idea is that selecting an individual with
multiple traits can facilitate the selection of another individual with a sufficiently high
score, ultimately benefiting the assignment. Similarly, if an individual with multiple
traits has a sufficiently high score, they may be preferred over multiple individuals, each
possessing only one trait but with higher individual scores. In Example[I] these individ-
uals correspond to m¢ and w;. Our approach explicitly considers the complementarities
that arise while ensuring fairness through the score-based criterion. By doing so, it can
benefit individuals with multiple traits, who might not always be selected under standard

choice rules, particularly the horizontal choice rule used in assignment pu.

5In the education context, considering the assignment score is motivated by peer effects, as students’
performances are influenced by their peers. A higher total score may foster a more competitive and
stimulating learning environment, enhancing outcomes (Sacerdote} 2001/ and [Zimmerman), [2003)).

STn the literature, these thresholds are also referred to as reserved seats. However, in the one-to-all
framework, this would imply that a single individual could fill multiple reserved seats.

"If there is only one trait, Parts A and B together coincide with the over-and-above rule.



In our approach, we limit the number of traits to two. While this may seem restric-
tive, it provides a practical framework for modeling a wide range of real-world scenarios.
This limitation arises primarily from the increased complexity in the assignment process
when multiple traits interact and create complementarities. For instance, introducing
more than two traits can significantly complicate the design of the assignment mech-
anism, especially when trying to maintain fairness and equity. Note that Sonmez and
Yenmez| (2020)) also consider only two traits, which makes the approach tractable. These
traits can represent distinct categories, such as vertical and horizontal reservations, com-
monly found in affirmative action policies—such as those targeting gender and ethnicity
representation. While this two-trait framework is flexible and applicable to a variety of
cases, in Section [4] we discuss how the choice rule can be adapted to settings involving

more than two traits, acknowledging the additional challenges this introduces.

Literature Review

This paper contributes to the growing literature on resource allocation problems under
affirmative action policies. In the context of school choice, affirmative action mechanisms
based on quotas have been extensively studied. [Kojima/(2012) identifies key challenges in
designing such policies, which primarily aim to ensure fair representation of students from
underrepresented backgrounds. Hafalir et al.|(2013) introduce a framework where schools
enforce minimum quotas for minority students. [Ehlers et al.| (2014]) extend this analysis
to settings with more than two types, considering both minimum and maximum quotas.
Echenique and Yenmez (2015) provide an axiomatic characterization of choice rules
that satisfy minimum representation. Kominers and Sonmez (2016) propose a general
matching model with slot-specific priorities, applicable to affirmative action settings.
Dur et al| (2018) examine the allocation of public school seats in Boston, highlighting
how the sequencing of reserved and open seats can unintentionally weaken walk-zone
priorities. Although these contributions share a similar objective to ours, they all assume
that individuals belong to at most one protected group. As discussed in the introduction,
in many real-world markets, individuals may belong to multiple protected groups, which
introduces complementarities when minimum representation requirements are imposed.
This paper contributes to the literature by incorporating these complementarities and
addressing the resulting complexities.

In recent years, several contributions have considered overlaps within categories.
Motivated by the design of affirmative action policies in India, [Sonmez and Yenmez

(2019) were the first to design choice rules in this context. They analyze the overlap of



criteria by studying vertical and horizontal reservations together in the contexts of the
labor market and college admissions. Under the one-to-one reserve matching, |Sonmez
and Yenmez (2022) characterize the horizontal envelope choice rule, which is the unique
rule that maximally complies with reservations, eliminates justified envy, and is non-
wasteful. [Pathak et al| (2024) generalize the horizontal envelope choice rule to address
the allocation of medical resources during the COVID-19 pandemic.

In our approach, we consider the one-to-all reserve matching. [Sonmez and Yenmez
(2020)) propose a choice rule in this context that maximally complies with reservations,
eliminates justified envy, and is non-wasteful. However, multiple rules satisfy these
axioms. Notably, Dur and Zhang (2023) introduce a choice rule that satisfies these
axioms and leads to an assignment that is not dominated in rank by any other assignment
that maximally complies with reservations, eliminates justified envy, and is non-wasteful.
In this paper, we introduce the MSMG choice rule, which maximally complies with
reservations, eliminates justified envy, and is non-wasteful. Furthermore, we characterize
it by showing that the assignment produced by the MSMG rule is never dominated in
score by any other assignment that maximally complies with reservations, eliminates
justified envy, and is non-wasteful.

The remainder of the paper proceeds as follows. Section 2 introduces the model and
the desirable axioms for choice rules. Section 3 presents the MSMG choice rule and our
results. In Section 4, we discuss applications and limitations. Proofs are collected in the

Appendix.

2 Model

We consider a matching model composed of a finite set of individuals, denoted by Z,
and ¢ identical positions to allocate. Each individual prefers to be assigned to a position
rather than remain unassigned and demands a single position. Since the positions are
identical, each individual is indifferent among all positions.

Each individual i € 7 is characterized by the traits she inherits. Let T = {t1,t2} be
a finite set of reserve eligible tmitsﬁ We allow individuals to inherit multiple traits. Let
7(i) € T be the set of traits inherited by individual i. For a given subset of individuals
ICTZ let Iy ={iecl:ter(i)} bethe set of individuals with trait t.

Each individual ¢ € 7 has a (merit) score, where the score function is 0 : Z — R,

8In this paper, we consider only two reserved traits. In Section EL we discuss the complexity of
extending the model to more than two traits. As mentioned in the introduction, this constraint allows
us to capture a wide range of real-life applications.



and o(7) is the score of individual i. We assume that for every i,j € Z such that i # j,
we have o(1) # o(j).

Let I C 7 be the set of individuals who apply for positions. An assignment is a subset
of individuals I’ C I such that |I’| < q. Let r; € N denote the minimum representation
required for trait t € T in an assignment. We assume that the minimum representation
required is no more than the capacity, i.e., > ,c771 < q.

For any set of applicants I C Z, a choice rule C : 27 — 2T selects an assignment, i.e.,
C(I)CIand |C(I)| <gq.

Given I C Z, minimum representations implemented on a minimum guarantee basis
require that for every trait ¢t € T, either at least r; individuals with trait ¢ are chosen or

all individuals with trait ¢ are chosen.

Definition 1. An assignment I’ C I mazximally complies with reservations if it satisfies
the minimum representation required for I, i.e., for every trait ¢ € T, we have |I]| >
min{r, |I;|}. A choice rule C maximally complies with reservations if, for every set I C Z,

C(I) maximally complies with reservations for I.

Note that the definition of minimum guarantee basis allows an individual ¢, upon
admission, to count towards each of the traits that she has. This is known as one-to-all
reserve matching (Sonmez and Yenmez, 2020).

Next, we define two axioms that a choice rule should satisfy in the context of fairness.
The first axiom requires that an individual be rejected only if all positions are filled by

other individuals.

Definition 2. Given a set of individuals I C Z and an assignment I’ C I, the assignment
I' is non-wasteful if |I'| = min{q, |I|}. A choice rule C' is non-wasteful if, for every I C Z,

the assignment C([) is non-wasteful.
The second axiom is the fairness notion introduced by [Sénmez and Yenmez (2020)).

Definition 3. Given a set of individuals I C Z and an assignment I’ C I, we say that
individual i is justifiably envied by j if:

(i) jeI\I'yandie I,

(ii) 7(2) € 7(j), and

(iii) o(i) < o(j).
Given a set of individuals I C Z, an assignment I’ C I eliminates justified envy if there
does not exist a pair of individuals (i,7) € I x I such that ¢ is justifiably envied by
j. A choice rule C eliminates justified envy if, for every I C Z, the assignment C([I)

eliminates justified envy.



In this paper, we consider the score of an assignment. Given a set of individuals
I C 7, let m(I') be the score of assignment I' C I such that m(I') = > ;cpo(i). We

normalize m(0)) = 0.

Definition 4. Given a set of individuals I C Z, and two assignments I, I C I, we say
that I’ score-dominates I" if m(I') > m(I"”). A choice rule C' score-dominates a choice
rule C" if, for some I C Z, m(C(I)) > m(C'(I)).

3 Maximal Score Choice Rule

In this section, we introduce the Maximal Score and Minimum Guarantee (MSMG)
choice rule and study the axioms presented in Section

Maximal Score and Minimum Guarantee (MSMG) Choice Rule C*

Given a set of individuals I C Z, the outcome of the MSMG choice rule, denoted by
C*(I), is obtained via the following three (main) parts.

Part 0: Initialization of C*

If |I| < ¢, then C*(I) = I, and the procedure terminates. Otherwise, set
r,(0) = min{ry, I [}, re,(0) = min{ry,, [I, [},

q(0) = ¢ = 7,(0) = r1,(0), and C*(1)(0) = {0}.

C* proceeds to Part A with these parameters.
Part A: Iterative Maximum Score Selection.

Let 7, ,74,, ¢ and C*(I) be the given parameters, initialized as follows:

74, (0) = 14y, 78,(0) =11y, q(0) =¢q, C*(I)(0) = C*(I).

Step k for k£ > 1:
o If g(k — 1) < 0, proceed to Part B with ry (k — 1), re,(E — 1), g(k — 1), and

C*(I)(k —1).
o Otherwise, select the g(k — 1) individuals with the highest scores in I, denoted by
I*. Set

C*(I)(k) = C*(I)(k = 1) U I*,
Tty (k) = rtl(k: - 1) - ’Itkl|7
TtQ(k) = th(k - 1) - ’Itkg‘a

q(k) =Ty (k - 1) — Ty (k) + th(k - 1) - th(k)'



If ri, (k) = 0,7,(k) = 0 and q(k) = 0, then the procedure terminates. Otherwise,
proceed to the next step.
Part B: Balancing Reserves.

Let r4,,7t,, q, and C*(I) be the given parameters, initialized as follows:
re,(0) =11y, 11,(0) =11,y q(0) =q, C*(1)(0) = C*(I).

Step { for ¢ > 1:
o If g(¢ — 1) > 0, proceed to Part A, with r; (£ — 1), r,(¢ — 1), g(¢ — 1), and
C*(I)(£ —1).
Otherwise:
o If ry, (£ —1) =10 — 1), proceed to Part C, with r,, (¢ — 1), r,(¢ — 1), ¢(£ — 1),
and C*(I)(¢ —1).
o Ifry (£—1) >y, (£ —1), choose the ry, (¢ — 1) — 1y, (£ — 1) individuals with trait ¢;
with the highest score in I\ C*(I)(¢ — 1) denoted I*.
o Ifry,(£—1) >y (£ —1), choose the r, (¢ —1) —r¢, (¢ — 1) individuals with trait ¢-
with the highest score in I'\ C*(I)(¢ — 1) denoted I*.
Set
CHI)(0) =C*(I)(t —1) U T,

Tt (ﬁ) =Tt (E - 1) - ’Itzl‘:
th(g) =Tty (6 - 1) - ’Itgg‘a
q(0) =74, (0 = 1) =70, (£) + 14, (€ = 1) = 75 (€) = 7).

If ri,(0) = 0,1,(¢) = 0 and q(£) = 0, then the procedure terminates. Otherwise,
proceed to the next step.
Part C: Satisfying Minimum Representation.

Let r,,74,, ¢ and C*(I) be the given parameters, initialized as follows:
Tty (O) =Tt, Tty (0) = Tty, q(O) =4q, cr (I)(O) = C*(I>

Step s for s > 1:
o If g(s —1) > 0, proceed to Part A with 7, (s — 1), r,(s — 1), ¢(s — 1), and
C*(I)(s—1).
Otherwise,
o Choose the individual with trait ¢; with the highest score in I\C*(I)(s—1), denoted
i§,, and the individual with trait ¢ with the highest score in I'\C*(I)(s—1)U{i{, },



denoted i3,. Set I, ;, = {i},if,}.

o Choose the individual with trait to with the highest score in I\C*(I)(s—1), denoted
Ji,» and the individual with trait ¢; with the highest score in I\ C*(I)(s—1)U{j;, },
denoted jf, . Set I}, ; = {Jji,, ji, }-

o Choose the individual with both traits ¢; and to with the highest score in I\
C*(I)(s —1), if such individual exists, denoted by i¢,. Then, choose the individual
with the highest score in I\ C*(I)(s — 1) U {i}, }, denoted by i*. Set I3, = {i}),i°}.
Otherwise, if there is no such individual, set I3, = {0}.

Choose the set of individuals that maximizes the total score:

r=1r

o+, With p* = arg max (m(I3)).

pe{(t1t2),(t2,41),0} " 7
Set
C*(I)(s) =C*"(I)(s—1) U,

Tty (5) =Ty (5 - 1) - |Ifl|v
Tty (3) =Tty (3 - 1) - ’Iisg’a
q(s) =71, (s = 1) =i, (8) + 1, (s — 1) = rey(s) — |17,

If ri,(s) = 0,7,(s) =0 and q(s) = 0, then the procedure terminates. Otherwise, proceed
to the next step.

In words, the MSMG choice rule proceeds as follows: In Part 0, the rule begins
by identifying the necessary reserves, which we refer to as requirements. The remaining
capacity (excess to these requirements) is then determined. This sets up the framework
for the subsequent parts. Three ordered parts follow, each containing multiple steps,
which guide the selection process until the requirements are fully satisfied.

In Part A, if the remaining capacity from Part 0 is positive, this capacity is filled
by individuals with the highest scores. If individuals with traits are selected during
this phase, the corresponding requirements are reduced accordingly. If the remaining
capacity is zero or negative, the procedure moves to Part B.

In Part B, the process begins with the remaining requirements and capacity. Seats
are filled incrementally to equalize the requirements for both traits. For the trait with
the higher remaining requirement, C* selects the individual with the highest score among
those not yet selected. If any of the selected individuals also possess the other trait, the
requirements are adjusted accordingly.

If, at this point, the requirements for both traits are equalized, the rule transitions

10



to Part C. If not, the process repeats Part A, where individuals with the highest score
are chosen until the balance is achieved.
Part C deals with complementarities between traits. After initializing the remaining
requirements and capacity, C* selects two individuals using one of three methods:
e The first method selects the individual with the highest score who has trait ¢y,
followed by the individual with the highest score who has trait ts.
e The second method reverses this order, selecting first the individual with trait o
and then the individual with trait ¢, ]
e The third method selects the individual with the highest score who possesses both
traits, and then another individual with the highest score from the remaining pool.
After these selections, C* compares the total scores from the three pairs of individu-
als and chooses the one with the highest total score. Requirements are then reduced
according to the traits of the selected individuals.

In the following example, we illustrate how C* selects individuals.

Example 2. Let I = {iy,i9,...,712}, ¢ = 8, 14, = 4, and ry, = 2. The distributions of
traits and scores are given in the following table, where the black dots (e) represent the

traits of each individual.

Individuals il iQ i3 i4 i5 i6 i7 is ig ilO i11 ilg

1 . ° ° . ° °
to ° ° ° °

Score 100 {99 | 98 | 95 |80 | 75| 70 | 65 | 60 | 55 | 50 | 45

Table 1: Traits and scores.

C™* proceed as follows:

o Part 0: The initial requirements are given by 74, (0) = min{4,6} = 4, r,(0) =
min{2,4} = 2, and the capacity is ¢(0) =8 -4 —-2=2> 0.

o Part A: Step 1. Since ¢(0) > 0, C* chooses the two individuals with the highest

score in I, namely {i1,i2}. Since 7(iz) = {t1} we have
re, (1) =4 —3and r,(1) =2 -0,

1) =(4—-3)+(2-2)=1>0.

9This step helps prevent selection effects that may arise when individuals belong to multiple groups
(see|Dur et al.| [2018| [Sonmez and Yenmez| 2020, and |Sonmez and Yenmez, [2022). Exampleillustrates
this phenomenon.

11



o Part A: Step 2. C* chooses the individual with the highest score in I\ {i1,i2},

namely {iz}. Since 7(i2) = {0} we have
T, (2) =3 —0and r,(2) =2 -0,

g2)=(3-3)+(2-2) =0.

o Part B: Step 1. Since 7, (0) > 74,(0), C* chooses the individual with the highest

score in I\ {i1,i2,i3} with trait ¢, namely {i7}. Since to ¢ 7(i7) we have
r, (1) =3 —1and r,(1) =2 -0,

g1)=0B-2)+(2-2)—1=0.

o Part C: Step 1. Now 7, (0) = r4,(0) = 2.

— C* select the individual with the highest score in I'\ {i1, i3, i3, 97} with trait ¢1,
namely {ig}, and the individual with the highest score in I\ {i1,i2,13,47,19}
with trait ¢y, namely {is}, with I} ,, = {i5,i9} and m(I}, ;,) = 140.

— C* select the individual with the highest score in I'\{i1, i2, 73,97} with trait tg,
namely {i5}, and the individual with the highest score in I\ {i1,i2,13,77,15}
with trait ¢;, namely {ig}, with I}, , = {is,io} and m(I}, ;) = 140.

— C* select the individual with the highest score in I\ {i1,2,13,47} with trait
t1 and to, namely {i10}, and the individual with the highest score in I\
{i1, 12,13, 47,410}, namely {is}, with I}, = {44,410} and m(I}) = 150.

C* chooses 1},. Since 7(iq) = {0} we have
ry, (1) =2 —1and r, (1) =2 — 1,

gq)=2-1)+2-1)-2=0.

o Part C: Step 2. Now 74, (1) =7, (1) = 1.

— C* select the individual with the highest score in I\ {i1,12,13,1%4,77,710}
with trait ¢;, namely {ig}, and the individual with the highest score in
I\ {i1,i9,1i3,14,107,19,910} with trait to, namely {i5}, with It21,t2 = {i5,i9}
and m(I7 ;,) = 140.

— C* select the individual with the highest score in I\ {i1,i2,13,14, 47,710}
with trait ¢e, namely {i5}, and the individual with the highest score in
I\ {i1,ia, 13,14, 15, 07,410} with trait ¢1, namely {ig}, with I2 , = {is,ig}

12



and m(IZ, ;) = 140.

— C* select the individual with the highest score in I'\ {i1, i, 3,44, 97,4910} With
trait ¢; and t9, namely {i12}, and the individual with the highest score in
I\{i1, 2,13, 14,147,410, 912}, namely {is}, with I3 = {i5,412} and m(I3) = 125.

C* chooses I?. ;.. Since 7(i5) = {t2} and 7(ig) = {t1} we have

r(2) =1—1and r,(2) =1—1,

g1)=(1—0)+(1-0)—2=0.
Thus, C*(I) = {41,142, 13, 14, i5, i7, i9, 110 }-

Our first result establishes that the MSMG choice rule satisfies the axioms presented
in Section 21

Theorem 1. The MSMG choice rule C* maximally complies with reservations, elimi-

nates justified envy, and is non-wasteful.

Sonmez and Yenmez (2020), and later Dur and Zhang (2023) show that several rules
can satisfy these axioms. However, in Part C, the construction of the MSMG choice
rule allows for the consideration of complementarities. A key feature of this part is the
selection of three pairs of individuals. The intuition behind this process is as follows: if
the set Ip (which consists of the individual with the highest score who possesses both
traits, followed by the individual with the highest score among those not yet selected)
has the highest total score, this indicates that the individual with both traits has enabled
the selection of someone who otherwise would not have been chosen. By comparing the
scores across the three sets, complementarities are examined. The underlying idea is
to account for potential complementarities and to allow the recruitment of individuals
who possess multiple traits. If these individuals have sufficiently high scores, or if their
selection enables the recruitment of an individual with a higher score, they will be chosen.
The next example illustrates Part C of C* and the impact of complementarities on the

assignment process.

Example 3. Let I = {iy,12,43,i4}, ¢ = 2, 7, = 1, and r,, = 1. The distributions of
traits and scores are given in the following table.
In this example, C* proceeds directly to Part C. We have the following sets and

scores:

Example[3]illustrates two key points. First, the order in which individuals are selected

is important, as the resulting sets differ. Second, when the two sets I, ;, and Iy,
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Individuals il ’iQ ’i3 ’i4

t . °
to . °
Score 100 | 90 | 80 | 70

Table 2: Traits and scores.

Sets | Individuals | Score

Iy, 1o {ia,13} 170

Iiy 1, {i2, 14} 160
Io {i1,12} 190

Table 3: Sets and scores.

obtained in Part C are distinct, the set formed by first selecting the individual with the
highest score possessing both traits, followed by the individual with the highest score,

yields the highest total score. The following proposition formalizes this observation.

Proposition 1. Consider Part C in the MSMG choice rule C*. If for some s, I}, ;, #
Its%tl, then

O =ar max m(I?).
gpe{(tl,tz)»(tz,tl),o} (p)

Proposition [1| shows that complementarity results in an increase in the assignment
score when considering the one-to-all selection method.

Sonmez and Yenmez (2020) define the class of paired-admissions choice rules, which
include rules that maximally comply with reservations, eliminate justified envy, and
are non-wasteful. Our main result establishes that the MSMG choice rule is not score-

dominated by any choice rule in this class.

Theorem 2. The MSMG choice rule C* is not score-dominated by any choice rule that

maximally complies with reservations, eliminates justified envy, and is non-wasteful.

4 Discussion

In this section, we discuss the application of our results and the computational limitations

that may arise when considering more than two traits.
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4.1 Applications of the MSMG Choice Rule

The MSMG choice rule balances meritocracy and fairness while maximizing the assign-
ment score. It serves two main objectives. First, it minimizes mismatches in assignments.
In the context of the labor market, where scores represent individuals’ productivity,
maximizing the assignment score is akin to optimizing economic output, benefiting both
firms and employees. Second, the rule enhances opportunities for individuals with mul-
tiple protected traits. As highlighted in the introduction, traditional affirmative action
policies often fail to address the complexities of supporting individuals who belong to
multiple disadvantaged groups. By accounting for complementarities and incorporating
individuals’ scores, this approach increases the attractiveness of candidates with multi-
ple traits. As a result, firms can more efficiently meet diversity quotas, gaining greater
flexibility in their hiring strategies.

A key application of this framework is in the design of compensation structures
for individuals with multiple protected traits. By incorporating individual scores, this
method offers a systematic procedure for determining the necessary bonuses or incen-
tives to ensure the selection of such individuals. In a labor market setting, this approach
allows for the precise identification of the level of subsidy a firm should receive to incen-
tivize hiring while maintaining meritocratic principles. This methodology is particularly
relevant for public sector hiring, university admissions, and corporate diversity initia-
tives, where structured affirmative action policies aim to balance fairness and efficiency.
For example, universities implementing intersectional affirmative action programs can
use this approach to allocate financial aid more effectively, ensuring that students from

multiple underrepresented backgrounds receive equitable support.

4.2 Limitations and Computational Challenges

This paper makes a twofold contribution to the literature. First, we introduce a novel
approach to handling complementarities while adhering to fairness criteria. Previous
research has highlighted the computational challenges involved in constructing fair as-
signments when there is overlap between groups. While we acknowledge these challenges,
conventional methods often rely on either restrictive axiomatic frameworks or brute-force
computations to determine optimal assignmentsm In contrast, we propose a choice rule

that is both intuitive and practical to implement.

10As discussed by [Dur and Zhang (2023), some approaches require computing all assignments that
meet the representation thresholds, followed by applying a choice rule to these assignments to determine
fairness.
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Secondly, we provide insights into extending the MSMG choice rule to scenarios
involving more than two protected traits. For example, with three traits, Part C of
C* must evaluate multiple assignment configurations: selecting the individual with the
highest score possessing all three traits, selecting individuals with two of the three traits
along with another individual possessing the remaining trait, and so on. The emergence
of such complementarities in a setting with more than two traits introduces significant
computational complexities.

These challenges align with findings from (Sonmez and Yenmez, 2020)), who establish
that no paired-admissions choice rule satisfies the substitutes condition (Proposition 5
of Sonmez and Yenmez, 2020). Consequently, while our approach offers a structured
solution for designing multi-trait affirmative action mechanisms, future research should
focus on addressing the computational scalability of these methods in settings with more

than two traits.

A Proofs

Before proving our results, we introduce a lemma for Theorem [I} Lemma [I| establishes
that in Part C of C*, if the pair with the highest score is the one obtained by considering
the set 15, and the second individual has at least one trait, then I? coincides with at

least one of the two other sets under consideration.

Lemma 1. Consider Part C in the MSMG choice rule C*. If for some s, O =
Arg MAXpe (¢, 1), (t2,t1),0 M(I,y) and for some ¢ € T, [(I3):] > 1, then there exists p €
{(tl,tg), (tg,tl)} such that I} = IS.

Proof. We know that m(I3) > m(If ;,) and m(I3) > m(I;, ;). Let ip denote the first
individual selected from I and j the second. We know that j possesses a trait (i.e.,
7(j) # 0). Without loss of generality, assume that ¢t; € 7(j). Since j was selected as
the individual with the highest score among those not yet chosen, we have two possible
cases:

o If o(io) > o(j), then I}, , = {io,j} because t2 € 7(ip) and ip is the individual
with the highest score. Additionally, 7 is the individual with the trait ¢; and the
highest score among those not yet chosen. Therefore, 15, = I}, ;..

e If 0(j) > o(io), then I} ,, = {io,j}, as m(13) > m(I{ ;,), and j has the trait ¢y,
with t € 7(ip). Thus, 1§ = I} 4,

|
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A.1 Proof of Theorem [1]
Proof.

Lemma 2. C* maximally complies with reservations.

Proof. Consider an arbitrary set of individuals I C Z. By the definition of the choice rule
C*, in Part 0, 74, (0) = min{r,, ||} and 7,(0) = min{ry,,|,|}. This construction
follows from Definition [l

In Part B, individuals are selected based on the reserves. It is straightforward that
individuals with the trait with the highest r.(¢), t € {t1,t2}, are chosen until r, (¢) =
T, (€). C* then proceeds to Part C, where individuals are selected in pairs. The rule
remains in Part C unless, within a selected pair, one individual possesses both traits,
while the other has at least one trait. In such cases, individuals are selected in a manner

that restores the equality 7, (¢) = r¢,(£). The rule continues until r¢, (¢) = r,(¢) = 0. W
Lemma 3. C* eliminates justified envy.

Proof. Suppose, for contradiction, that C* does not eliminate justified envy. That is,
there exist a set of individuals I C Z, an individual i € C*(I) and an individual j €
I\ C*(I) such that o(j) > o(i) and

DN UGy, [ 2 min{re, [T [} [UCTI) N\ A{i}) UG}y, | = min{ry, [T,[}-

Since 7 is chosen and j is rejected even though j has a higher score than 4, i could not
be chosen in Part A of C*. Therefore, it must be the case that ¢ possesses a trait that
j does not, according to the construction of C*(I) in Part B or Part C. Without loss
of generality, let ¢; be this trait. Since

[[(C (DN Ai}) U}, | = mindre, (1]}

there must be at least 74, + 1 individuals in C*(I) who have trait ¢;. We now consider
two cases based on whether ¢ has trait ¢5 or not.
o Case 1: ty € 7(i), so 7(1) = {t1,t2}. Individual i must have been selected in Part
B or Part C for her trait ¢ or because ¢ has both traits. We further consider two
possibilities:
(i) Suppose that there are at least 7, + 1 individuals with trait to in C*(I).
We know that at least one individual with trait ¢t; and one individual with

trait to must have been chosen in Part A at the end of the procedure. Let

17



i be the last individual with trait ¢; chosen, and i the last individual with
trait to chosen. We know that o(i) > o(j) and o(z) > o(j). Let i be the
last individual with both traits to be selected by C*. This individual exists
because there is at least one individual with both traits chosen, as i € C*(I).
If i was chosen in Part A the contradiction is direct since j has not been
chosen. Thus it follows that o(z) > o(j). Since i has been chosen before i,
we know that o(i) > o (i) > o(j) a contradiction. Therefore, suppose that g

has been chosen in Part B or Part C.

If 7 was chosen in Part B, we know that for a trait ¢t € {t;,t2} there was
a higher reserve requirement. The individual i was therefore chosen for one
of her traits, and as the individual with this trait having the highest score.
Thus, i has a higher score than 7 if the trait was ¢; and ¢ if the trait was
to. Since at least one of the two statements must be true, it follows that
o(i) > a(j).

If i has been chosen in Part C, at a step s we have three possibilities, de-

s

pending on which set maximizes the score. If i € I | t,» Uhis means that ¢ has

been chosen for one of her traits, and it follows that i has a higher score than
4 if the trait was t; and 1 if the trait was t5. The second case where i € IY

is symmetrical. Finally, if 7 € I}, we know that
m(1p) = m(lf, ;) and m(15) = m(If, 4,)-

If the individual chosen for her score has a trait, then by Lemma [T, we know
that m(I3) = m(I ;,) or m(1) = m(I}, 4 ), and therefore i was chosen
for her trait, and that o(i) > o(j). Thus, this individual has no trait. By
construction of C*, the requirement for the trait only decreased by 1, and
q(s) = 0, meaning it was not possible to proceed to Part A. Consequently, the
individuals 7 and ¢ could not have been selected, which leads to a contradiction
as there are at least 74, + 1 individuals with trait ¢; in C*(I), and r¢, + 1
individuals with trait to in C*(I).

Suppose that there are at most 7, individuals with trait to in C*(I). In
this case, j must also have t3 since | [(C*(1) \ {i}) U {5}, | > min{rs,, |I1,[}.
Therefore, 7(j) = {t2}. Similar to Case 1 (i), consider the last individual
with the trait to chosen in C*, denoted i. We know that o(i) > o(j) since
there must be at least r;, + 1 individuals with trait ¢; in C*(I). If i also

has the trait ¢1, then by construction we have that o(i) > o (i) and therefore
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o(i) > o(j), a contradiction. Suppose that i does not have trait ¢;. We
consider the last individual 7T with trait ¢; to be chosen. Since there are at
least 7, + 1 individuals in C*(I) who have trait ¢;, we know that i’ is chosen
in Part A. By construction of C*, the choice of traits is made in Part B
and Part C, and i must have both traits ¢; and t5. Therefore, o (i) > o(if),

which implies that o(i) > o(j), a contradiction.

o Case 2: ta ¢ 7(i), so 7(i) = {t1}. Since | [(C*(I) \ {i}) U{j}];, | = min{rs,, I} |},
we know that the last individual with trait ¢; has been choosen in Part A. Let
il denote this individual. Since o(i') > o(j), and by the construction of C*, we
know that ¢ has been selected in Part B or Part C for her trait. Therefore,
o(i) > o(it) > o(j), a contradiction.

|

Lemma 4. C* is non-wasteful.

Proof. Consider an arbitrary set of individuals I C Z and ¢. In Part 0, if |I| < ¢ then
all individuals in I are selected, and we have C*(I) = I, ensuring that C*(I) is non-
wasteful. We only need to consider the case where |I| > ¢. In Part 0, the requirement
for trait ¢ is given by 74, (0) = min{r,, |I;, |}, which guarantees that there are individuals
with trait t; present in I. Symmetrically with ¢5. At the end of Part A, the selection
process ensures that the total number of remaining unassigned individuals is at most
r, (k) + ri, (k). For Part B and Part C, if more traits are filled than the number of
individuals (i.e., at least one individual with both traits is chosen), then the process

returns to Part A concluding that C* is non-wasteful. |

A.2 Proof of Proposition

Proof. To prove Proposition [l we first show that if for some s, I} ,, # I, then
Ty O I, #0.

Let 41 be the first individual selected in Ifm and 79 the second, where i1 has trait
t1 and 9 has trait ¢2. Let jo be the first individual selected in If%tl and 71 the second,
where jo has trait t2 and j; has trait ¢;. By contradiction, suppose I} ;, NI}, ;, = 0. We
know that o(i1) > o(j1) since i1 € I} ,,, and o(i2) > 0(ja) as iz € I}, 4, or jo & I\ {i1}.
Similarly, we also know that o(ja) > o(i2) since j2 € I, 4, and o(j1) > o(i1) or
i1 ¢ I\ {j2}. This leads to a direct contradiction, and we must conclude that i; = jo.

By construction we know that 7(i1) = {t1,t2}. Consider now the construction of I3). Let
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io be the first individual selected in 1), and jo the second. It follows that ip = i1 = ja,
since if ig # i1, it would contradict the fact that o(ip) > o(i1), and 7(ip) = {t1,t2},
which would imply that ip must be selected first in I} ,,. Since jo is the individual
with the highest score in I\ {i1}, we have o(jo) > o(i2) and o(jo) > o(j1). Therefore,
m(13) > m(If ,,) and m(13) > m(I, ;) which conclude the proof. [ |

A.3 Proof of Theorem 2

Proof. Consider a set of individuals I C Z. If |I| < g, then C*(I) = I and I is the
only assignment that maximally complies with reservations and which is non-wasteful.
Thus, it suffices to focus on the case where |I| > ¢. Since C* is non-wasteful, we have
()] = q.

Let J C I be an assignment that maximally complies with reservations, eliminates
justified envy, and is non-wasteful, such that C*(I) # J. We must show that m(C*(I)) >
m(J). Suppose by contradiction that m(J) > m(C*(I)).

By construction of C*, it is clear that the difference in assignment scores cannot be
made at Part A, since C*(I) selects individuals with the highest score. We consider
three cases:

e Case 1: If r, = 1, = 0, then C* selects the individuals in I with the highest

score up to ¢ in Part A. Since J is non-wasteful and eliminates justified envy, it
is not possible that m(J) > m(C*(I)).

o Case 2: If 7, > 0 and r;, = 0, then C* proceeds to Parts A and B only. In
Part A, C* chooses the ¢ — r, individuals with the highest score. Requirements
are reduced if some of these individuals have the trait ¢1, and other individuals
with the highest score are chosen. When, for some k, g(k) = 0, C* proceeds to
Part B, where it selects individuals with the highest scores among those with the
trait ¢;. This construction follows that of the Over-and-Above Choice Rule (Dur
et al., 2018). Thus, if J maximally complies with reservations, it is not possible for
m(J) > m(C*(I)). Without loss of generality, the same reasoning holds if r;, =0
and ry, > 0.

e Case 3: If r,, > 0 and r;, > 0, then, C* begins with Part A, selecting the
q — rt, — Tt, individuals with the highest scores. The requirements are adjusted if
some of these individuals possess trait ¢ or to, and other individuals with higher
scores are chosen. When, for some k, (k) = 0, C* proceeds to Part B. Up to this
point, it is clear that the selected individuals are those with the highest scores.

In Part B, assume, without loss of generality, that ry, (I = 1) > r, (I = 1). C*
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selects the r4, (I = 1) — r, (I = 1) individuals with trait ¢; who have the highest
scores. Since J maximally complies with the representation constraints, it follows
directly that the representation of individuals with trait ¢; in J must be at least
ry, (I = 1) — r,(I = 1). By selecting individuals with the highest scores, it is
impossible for the individuals in J with trait ¢; to have a higher score than those
already chosen by C*.

If some of the selected individuals also possess trait to, then 74, (I = 1) is adjusted
accordingly. C* then proceeds to Part A, selecting individuals with the highest
scores.

If r, (k) = 0 or r, (k) = 0, we consider Case 2 and conclude that it is not possible
for m(J) > m(C*(I)). If r, (k) = (k) = 0, we consider Case 1 and conclude
that it is not possible for m(J) > m(C*(1)).

Otherwise, Parts A and B are repeated until r¢, (I = 1) = r4, (I = 1), at which
point C* proceeds to Part C. In Part C, three sets are selected, and only the one

with the highest total score is chosen. We consider the next claim.

Claim 1. If m(If, ;,) > m(I3) (m(If,;,) > m(I3)), then there isno i € I, 4, (i € I}, ;)
such that 7(z) = {t1,ta}.

Proof. Suppose, by contradiction, that m(I}, ;,) > m([3) and there exists i € I, ;, such
that 7(i) = {t1,t2}. Without loss of generality, assume that i was selected for its trait ¢;.
By construction, we know that ¢ is also selected in I since ¢ has both traits, and is the
individual with trait ¢; who has the highest score. The second individual selected in I3
is the one with the highest score among those who have not yet been chosen. Therefore,

m(15) = m(If 4,), leading to a contradiction. [ |

In Part C, if I}, ;, (or I}, ) is chosen, then we know that no individual with both
traits (Claim |1} is included. Individuals are selected first from those with trait ¢; (f2)
who have the highest score, and then from those with trait t3 (1) who have the highest
score. The requirements decrease by 1 at each iteration. By construction, it is therefore
not possible to select individuals with a higher score while still maximally complying
with the reservation constraints.

If I} is the set that maximizes the score, then there are three possible cases:

« If both individuals in I3 with both traits, then the one with the lowest score was
selected because they were the individual with the highest score among those not
yet chosen. The requirements decrease by 2, and the algorithm proceeds. If we had

4, (1) = 14, (1) = 1, the individual with the lowest score in I, is still the individual
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with the highest score among those not yet selected, making it impossible to choose

an individual with a higher score.

o If one individual in I3 has both traits while the other has none, then the re-
quirements decrease by 1, and the algorithm continues. Since I is the set that
maximizes the score, we know that it is not possible to consider a set with a higher

score while still maximally complying with the reservation constraints.

o If the individual selected for their score in I3 with a single trait, then the require-
ments decrease by 2 and by 1 accordingly. Since I} is the set that maximizes the
score, we know that it is not possible to consider a set with a higher score while
still maximally complying with the reservation constraints. At the next step, if
T, (I + 1) # 1, (1 + 1), then C* proceeds to Part A and chooses the individuals

with the highest scores among those not yet selected.

Following this reasoning, it is not possible that m(J) > m(C*(I)), which concludes
the proof. |
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