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Abstract

We study optimal lockdown decisions taken by a policymaker facing a pan-

demic modelled according to the standard SIRD deterministic model. The poli-

cymaker trades off the economic costs and the mortality record of the pandemic

which depend on the severity and duration of the lockdown. We contrast the

shortsightedness versus the farsightedness of the policymaker. Policy-related

peaks and rebounds are characterized and explain why a no-accommodating pol-

icy is self-defeating. A farsighted policy should not be too severe so as to avoid a

rebound. The shortest duration consistent with a given health goal is not the less

costly. There exists an optimal pair of duration and lockdown severity resulting

in herd immunity.
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Highlights:

• We analytically characterize the impact of lockdown policy on the dynamics

of a pandemic.
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• We show the importance of foreseeing the post-lockdown evolution of the

pandemic.

• We explain how rebounds are linked to lockdown policy.

• There exists an optimal policy combining duration and lockdown severity,

consistent with herd immunity.

1 Introduction

A pandemic such as the Covid-19 pandemic raises the issue of the best way to tackle it

and in particular the extent of lockdown policy as the way to stem the dissemination

of the virus within a given population.

There are two main strategies with respect to lockdown: suppression or mitigation.

The suppression strategy (aka “zero Covid”) does not compromise and aims at eradicat-

ing the pandemic by means of an extreme lockdown policy disregarding the immediate

economic costs so generated. The mitigation strategy (aka “living with Covid”) aims

at finding a compromise between the objective of limiting the number of fatal casualties

generated by the pandemic and the objective of mitigating the economic negative con-

sequences of lockdown measures. In this paper we investigate the mitigation strategy

applied to a pandemic from a theoretical point of view. Explicitly solving the model

we use, we are able to fully characterize the dynamics of the pandemic depending on

the assumed lockdown policy adopted by the policymaker and squarely address the

issue of the optimal policy when the aims of the policymaker are expressed by means

of a social payoff function. In other words, from a positive point of view, we use the

model to understand the consequences over the dynamics of a lockdown policy; from a

normative point of view, we tackle the determination of the optimal lockdown policy to

be decided by a policymaker confronted with a pandemic. Understanding the proper-

ties of lockdown policies, both positively and normatively, is important because in this

matter as in others, the possibility of policy mistakes with dire consequences cannot

be ruled out. As far as lockdown decisions are concerned, two sorts of mistake are

particularly important: policymakers may be myopic and unable (or unwilling) to look
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at the health costs beyond the lockdown period, and they may be unable (or unwilling)

to endogenize the length of lockdown, taking into account the economic as well as the

health cost generated by a pandemic. On the whole, the approach developed in this

paper allows us to better understand the negative consequences over time of inadequate

policy strategies and suggest important characteristics of the optimal ones: adopting a

farsighted perspective, anticipating the rebound process, and supporting a mitigation

strategy, as a longer and milder lockdown policy dominates a suppression policy.

A pandemic (like smallpox or tuberculosis), unlike an endemic (like the flu), is gen-

erated by a virus which is not susceptible of re-infection. It is eradicated once herd

immunity is achieved: no one may be infected. In the case of an endemic, since liv-

ing humans or animals can be re-infected, eradication is impossible. Accordingly, a

pandemic is modelled according to a variant of the canonical SIR model, whereas an

endemic is better modelled using a SIRS model.1 In this paper, focusing on pandemics,

we analytically solve a SIRD model augmented with a reduced-form equation sum-

marizing the economic losses incurred because of the pandemic and we search for the

optimal policy to be applied. We emphasize the importance of the time horizon of

a policymaker dealing with a pandemic. Indeed a policymaker who myopically solely

focuses on the severity of a lockdown and is not able to take into consideration the

duration of a lockdown makes a serious mistake. In particular it is likely to lead to

rebounds which ultimately worsen the fatality record of the pandemic. On the contrary

a farsighted policymaker prefers to have long but mild lockdowns than short severe

ones.

We first study the dynamics of a pandemic in the absence of a lockdown policy us-

ing a Susceptible-Infected-Recovered-Dead model (SIRD). This configuration provides

us with a benchmark: our analysis crucially hinges on the result that the peak of a

pandemic is attained when the proportion of susceptible agents is equal to the inverse

of the “natural” reproduction number. Then we address the issue of an active lockdown

policy, defined as increasing social distancing during a certain time period (duration)
1See Kermack & McKendrick (1927), Murray (2007). The dynamics generated by the various

models used in epidemiology are qualitatively very different. These differences are often neglected or
misperceived whereas they condition the adequacy of the health policy to be applied in each case.
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by restricting freedom of behavior, including freedom of moves: wearing masks, forbid-

ding certain act, limiting access to some activities. Social distancing limits individual

interactions and thus the dissemination of the virus. A lockdown policy therefore con-

sists in choosing the reproduction number of the pandemic over a given period. The

policymaker faces a standard dilemma between economic and health objectives. On the

one hand, a lockdown inflicts economic losses that the government wants to limit; on

the other hand, it reduces social interaction, thus the spreading of the virus and the

induced loss of lives. This dilemma is formalized by a welfare function depending on

these two arguments where the relative weight given to the mortality argument captures

the implicit “value of life” as assessed by the policymaker.

We contrast a short-term and a long-term perspective. We define a short-term

perspective as a single setting of a policy-chosen reproduction number when the time

horizon of the policymaker is limited to the duration of the lockdown policy. In contrast,

a long-term perspective takes into account the future consequences of a fixed-duration

lockdown policy. The first one is in line with the behavior of some policymakers when

they have a limited time horizon in mind (e.g. a political term). The second one is con-

sistent with intertemporal rationality. We characterize the dynamics of the pandemic

in both cases. In particular we study the impact of the “value of life” parameter on the

chosen reproduction number.

For each perspective a series of propositions illuminates the solution of the policy

dilemma. The importance of the various timings related to lockdown, the timing of

action, the termination date of the pandemic and their interplay with the marginal

impact of the degree of lockdown, is highlighted. Considering the policy duration as

given, we show that the optimal lockdown degree (the optimal reproduction number

chosen by the policymaker) negatively depends on the “value of life” and the fatality

parameters.

Using the long-term perspective we show that a post-policy pandemic rebound may

happen if the lockdown policy has been too strict and/or its duration too short: it

happens when the controlled pandemic has not passed its peak, that is when the end-of-

policy proportion of susceptible agents is above the inverse of the natural reproduction
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number. This explains why an extreme eradication policy such as a zero-Covid policy

is self-defeating. Realistically considering that it cannot last forever, there will be a

rebound once this policy is lifted and this rebound may lead to a very high number

of deaths and a low proportion of end-of-time susceptible agents. Taking into account

the possibility of rebounds explains why the optimal reproduction number chosen in

the long-term perspective may be higher than the reproduction number chosen in the

short-term perspective.

Tackling the role of the duration of a lockdown policy, we show that the shortest

policy able to reach a given mortality number, implying a stricter lockdown policy (the

choice of a lower reproduction number), is not economically the less costly: a less severe

lockdown policy extending over a longer period of time generates less economic losses.

Addressing the normative issue of the optimal policy, relaxing the assumption of a

given lockdown duration and endogenizing both the extent of lockdown and duration,

we prove that there exists an optimal couple of duration and reproduction number

solving the policy trade-off. Such a policy is consistent with herd immunity.

The propositions resulting from this analytical effort provide illuminating insights

on the interplay between the dynamics of a pandemic and the policy measures adopted

to control it, such as lockdowns. Useful recommendations on the strictness and dura-

tion of a lockdown may be derived from these propositions and should be useful for

policymakers confronted with a pandemic such as the Covid-19. Results derived from a

model which does not overly simplify the dynamics laws of a pandemic by eliminating

state variables or making extreme assumptions appear more general and robust than

those obtained when simpler models of a pandemic’s dynamics are used or when simu-

lation exercises based on calibrated versions of the standard SIR model are performed.

On the whole, they support the view that a mitigation lockdown policy (“living with

Covid-19”) is welfare-improving compared to a drastically severe policy (that is, the

desire to fight the dissemination of the virus by means of a very strict lockdown policy

applied over an unknown duration). The latter policy is unsustainable as the epidemic

will surge again sooner or later: there are rebounds, once the extreme lockdown mea-

sures are lifted, with letality consequences which can be severe. It thus cannot appear
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as an optimal policy.

Literature review

Most papers focusing to lockdown policies, in relation with the Covid-19 pandemic2,

have an empirical objective of understanding what to do and resort to a calibration ap-

proach based on the SIR epidemiology model and aim at better understanding the

stakes of lockdown policies. Eichenbaum, Rebelo, and Trabandt (2020a) solve com-

putationally a SIR model that features agents’ optimization and search for the best

consumption tax policy. Eichenbaum, Rebelo, and Trabandt (2020b) account also for

behavioral adjustments, as in their setting infected individuals become more reckless

if tested which makes testing optimal only when combined with quarantines. Alvarez,

Argente, and Lippi (2020) calibrate a SIR model using data of the WHO, in order to

find the optimal containment policy. Piguillem and Shi (2020) tackle an optimal con-

trol problem in a similar SIR model augmented with a intertemporal welfare function

based on two arguments, consumption-related utilities and the mortality records of the

pandemic. They calibrate their model on Italian data, compare the outcomes of various

lockdown policies and assess the relevance of a testing policy. Akbarpour et al. (2020)

simulate an agent-based model calibrated to a rich set of micro-level data and analyze

the impact of various policies. Acemoglu et al. (2021) analyze a multi-group SIR model,

including a more general transmission function. They show that differential lockdown

policies defined by the social planner are preferable to a undifferentiated lockdown pol-

icy. Farboodi, Jarosch, and Shimer (2020) take into account the individual choices with

respect to social activity in a pandemic and search, using a calibrated model based on

US data, the optimal policy with respect to social distancing.

Loertscher & Muir (2021) is closer to our methodology as they analyze a lockdown

policy in a theoretical SIR model which maximizes output subject to the constraint that

contagion is contained so that total hospitalizations do not exceed the health capacity

constraint both with a homogeneous population and an heteregenous population. How-

ever such a policy does not correspond to the solving of a trade-off between economic
2The Covid-19 pandemic has generated a flurry of papers aiming at finding the proper lockdown

policy by means of calibration exercises. For a survey on the economics of Covid-19, cf. Brodeur et al.
(2020).
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and health costs encompassed into a welfare function which is the subject of this pa-

per. Camera & Gioffré (2021) analytically study the economic impact of a sequence of

short-lived but extreme lockdowns in a model based on the theory of random matching,

which makes explicit how epidemics spread through economic activity. They do not

study the extent of lockdown and therefore do not address the issue of optimal lock-

downs. Bliman & Duprez (2021) study the link between lockdowns of fixed duration

and the final death toll of a pandemic, but do not address the dilemma between eco-

nomic and health costs related to lockdowns. Britton & Leskelä (2023) consider the

minimization of the total number of infected individuals. They show that an optimal

intervention strategy implies a single constant-level lockdown (and not a continuously

varying optimal control strategy). Similarly, Bliman & Rapaport (2023) show that

for the problem of minimizing the epidemic final size in the SIR model through social

distancing, there is no benefit in splitting interventions on several disjoint time peri-

ods. Caulkins et al. (2021) use simulation techniques to investigate optimal lockdown

strategies within a SIR model but do not tackle the analytical solution of the prob-

lem. Lastly Gonzalez-Eiras & Niepelt (2020b) resort to two simplified and tractable

versions of the modified SIR model developed by Bohner et al. (2019) in order to study

an optimal lockdown policy.3 The first one neglects the death burden and the distinc-

tion between infected and recovered. The second one rests on the assumption of full

mortality for the infected and of equal productivity of the susceptible and the infected.

The lockdown variable adjusts continuously. These models are calibrated. In a com-

panion paper, Gonzalez-Eiras & Niepelt (2020a) building upon Bailey (1975) simplify

the SIR model and restrict it to a single state variable, eliminating the possibility of

recovery after infection and thus mortality; this model is calibrated searching for the

optimal lockdown trajectory. These various simplifying assumptions drastically reduce

the scope of a lockdown policy. Our paper tackles the issue of characterizing analyti-

cally the optimal policy as a compromise between economic and health objectives when

the laws of motion of a pandemic as formalized by a standard SIR model are explicitly
3They justifiy their choice by writing: “SIR models of various flavours feature two endogenous

epidemiological state variables; this makes it difficult to embed economic choices in those frameworks
without sacricing analytical tractability, transparency, and generality.”
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taken into account. In Aspri et al. (2021) the social planner minimizes a loss function

which combines production and number of Covid deaths during a given period, in a

SEAIRD model. They prove the existence and uniqueness of an optimal control policy

(via a compacity argument). It is not characterized and there is no mention of epidemic

rebounds. Examples of contrained optimal policies are given via parameter selection.

Morris et al. (2021) study in a standard SIR model the theoretically optimal strategy

to reduce the peak prevalence, with time limited intervention. There are no economic

considerations and the social planner’s objective is to reduce the height of the epidemic

peak. It is shown that at the optimum there will be twin peaks, i.e. after the first peak

a rebound of the same height, since herd immunity is not attained after the first peak.

The optimal strategy is ”maintain” (keeping the number of infected constant) ”then

suppress” (fixing the reproduction number to 0), which cannot be viewed as a realistic

policy. Grigorieva & Khailov (2014) study the optimal control problem of minimizing

the total number of the infected on a given time interval, with the use of the Pontrya-

gin Maximum Principle. The optimal non pharmaceutical intervention (quarantine or

lockdown) is shown to be constant on a time interval (see also Grigorieva et al. (2016)).

Kruse & Strack (2020) study an optimal social distancing strategy with continuously

varying lockdown intensity in the presence of a trade-off between health and social

costs. But they do not tackle the case of rebounds as they assume comprehensive vac-

cination of the population at the end of the lockdown policy interval. Andersson et al.

(2022) tackle a similar trade-off as ours but use a simpler model than the SIR model,

with neither death nor recovery. Moreover they consider a myopic planner and do not

address the after-policy dynamics of an epidemic.

2 The model.

We consider a closed society which is affected by a pandemic. There is no shock in this

setting and the evolution of the pandemic can be described by a deterministic SIRD

model with mass action incidence, i.e. with an incidence −dS
dt

of the form of Equation
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(1) below4. Martcheva (2015); ? explains that the ”mass action incidence is used in

diseases for which disease-relevant contact increases with an increase in the population

size. For instance, in influenza and SARS, contacts increase as the population size (and

density) increase”. The same is true for COVID-19.5

The dynamics of the pandemic is given by the following set of equations for any t ∈ R :

dS

dt
= −b0I (t)S (t) (1)

dI

dt
= b0I (t)S (t)− γI (t) (2)

dRec

dt
= (1− δ)γI (t) (3)

dD

dt
= δγI(t) (4)

where S(t) is the number of individuals susceptible of being infected in the population

at time t, I(t) the number of infected individuals, Rec(t) the number of recovered in-

dividuals, and D(t) the number of deaths due to the pandemic. After the ”infected”

stage, individuals are said to be ”removed”. The number of removed individuals is R(t)

with R(t) = Rec(t) + D(t). A fraction δ of the “removed” (i.e. after infection) dies

from the pandemic. This parameter δ is the infection fatality rate. The fraction (1− δ)

recovers. Let N be the total number of individuals at time t = 0 in the society. We

have S(t) + I(t) +Rec(t) +D(t) = N at every instant t.

Now, we can define the following proportions:

s (t) = S(t)
N

is the proportion of individuals susceptible of being infected in the pop-

ulation at a given instant t, i (t) = I(t)
N

the proportion in the population of infected

individuals and r (t) = Rec(t)+D(t)
N

= R(t)
N

the proportion of removed individuals, with

s (t) + i (t) + r (t) = 1 at every instant t. Setting β0 = Nb0, this formally leads to the
4Gallic et al. (2022) uses a SIRD model to analyze the lockdowns in Europe and their optimality for

COVID-19 pandemics, Lin et al. (2010) uses a SIRD model to study non-pharmaceutical interventions
against pandemic influenza.

5On mass action incidence with a SIRD model, see Osemwinyen & Diakhaby (2015) for Ebola virus,
and Martianova et al. (2020) for COVID-19.
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following standard SIR model:

ds

dt
= −β0i (t) s (t) (5)

di

dt
= β0i (t) s (t)− γi (t) (6)

dr

dt
= γi (t) (7)

We set R0 ≡ β0
γ

the natural (initial) reproduction number.6 The parameter β0 refers to

social interactions and controls the spreading of the pandemic as it affects the variation

of the proportion of “susceptible” agents. It is specific to a pandemic and captures the

physical impact of social interactions within society on the dynamics of the pandemic.

This structural parameter is related to social habits and collective mores. The param-

eter γ is positive and corresponds to the rate of infected individuals recovering in a

given unit of time. “Removed” means either returning to perfect health (recovered) or

death. It is assumed here that once someone recovers from the virus, he or she is never

infected again: recovery is permanent.7 We shall return to this point in the conclusion.

This model has been used by Rowthorn and Maciejovski (2020) for simulation exercises

related to the Covid-19 pandemic. Here we shall analytically solve it, under various

lockdown policy configurations. The “natural” reproduction number may capture the

rearrangement of the production process such as teleworking, and more generally, the

changes of voluntary behavior induced by the advent of the pandemic. We abstract

from investigating this issue and take it for given.

We first study the dynamics of the pandemic when there is no lockdown policy

imposed by a public authority. The pandemic develops freely according to the repro-

duction number R0 and dies away when a sufficient fraction of the population has

recovered and does not transmit the virus any more. This policy has been dubbed a
6aka “basic” reproduction number. As noted by Avery et al. (2020), this number “embodies both

the underlying biological ability of the pathogen to jump from person to person in various types of
interactions as well as the number of interactions of each type that people have in the ordinary course
of their daily lives” (p.84) and may partially result from self-interested voluntary measures of social
distancing.

7This assumption doen not properly reflect the Covid-19 pandemic. Yet the model captures its
basic characteristics when new variants are neglected. Variants can be introduced in the model at the
cost of increasing complexity.
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“collective immunity” strategy. In this case, the pandemic eventually vanishes through

herd immunity: the number of recovered people is large enough so that the virus does

not find a significant number of “susceptible” individuals and does not reproduce itself

anymore. We shall use this configuration as a benchmark against which the various

lockdown policies may be compared. We assume R0 > 1, otherwise the pandemic can-

not start. Following Kröger & Schlickeiser (2020), we assume the following boundary

conditions: s (−∞) = 1, i (−∞) = 0 and r (−∞) = 0.

Collective immunity is reached when the pandemic is extinct. Given the determin-

istic nature of the model, it is reached at the “end of time”. Formally it is defined

as (s∞, 0, r∞): there are no more infected people, the proportion of susceptible s∞ is

positive and the proportion of recovered r∞ is equal to 1 − s∞. We refer to s∞ as

the end-of-pandemic (or “terminal”) susceptible proportion. It corresponds to herd

immunity.

Assuming that the reproduction number does not vary over time, we have the fol-

lowing lemma on the dynamics of the SIR model, given the “natural” laws of motion

of the three key variables s (t) , i (t) and r (t) of the pandemic (when driven by R0).8

Lemma 1. (i) The dynamics of the pandemic for t ∈ R is given by

r (t) = − 1
R0

ln s (t) (8)

i (t) = 1− s (t) + 1
R0

ln s (t) (9)

∫ s(0)

s(t)

1
β0s

[
1− s+ 1

R0
ln s

]ds = t . (10)

t 7→ s (t) is a decreasing function, and t 7→ r (t) is an increasing function.

(ii) The proportion of infected i(t) is first increasing, then decreasing. It is maximal

when s (t) = 1
R0

and equal to imax = 1− 1
R0

[1 + ln (R0)].
8For a similar result see Harko et al. (2014), p.187.
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(iii) At the end of the pandemic, we have (s, i, r) = (s∞, 0, r∞), with r∞ = 1− s∞ and

s∞ given by

R0 = − ln (s∞)
1− s∞

, 0 < s∞ < 1. (11)

Proof. See Appendix A.1.

11

11

00

Figure 1: Variations of i with respect to s in the plane (s, i)

This lemma explicits the functional dynamics of the three variables of interest,

the numbers of susceptible, infected and recovered people from the SIR model and

establishes some properties of these dynamics. (i) details the interdependence between

the dynamics of these variables. Eq.(8) shows that the proportion of recovered is a

decreasing function of the proportion of susceptible; Eq.(9) shows that the proportion of

infected is a non-monotone function of the proportion of susceptible. Eq.(10) shows that

the proportion of susceptible varies with time depending on β0 and γ. As expected, the

proportion of susceptible decreases with time and the proportion of recovered increases

with time.

(ii) proves that the relation between the proportion of infected and the proportion

of susceptible is non-monotone and reaches a maximum when s (t) is equal to 1
R0
. The

higher the natural reproduction number, the higher the peak of the pandemic. As we
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shall see later, the reproduction number plays a critical role in the dynamics of the

pandemic once a lockdown policy is put in place. Once having recovered, one cannot

be infected again. Thus the evolution of the proportion of infected depends on both the

reproduction number and the evolution of the pool of susceptible. At the beginning of

the pandemic for a givenR0, the pool of susceptible is large and the number of infections

increases since newly infected agents easily spread the virus into a large population of

susceptible. But the pool (hence the proportion) of susceptible necessarily declines once

the pandemic has started. Over time newly infected spread the virus into a smaller

and smaller population even with the same reproduction number. This negative effect

curbs down the rate of new infections and the proportion of infected declines. Thus the

proportion of infected is a non-monotonous function of the proportion of susceptible.

The maximum rate is achieved when the proportion of susceptible is just equal to the

inverse of the natural reproduction number. The higher this number, the lower the

susceptible proportion after which the number of infected people starts declining. At

s (t) = 1/R0, there is a “herd immunity” threshold: the expected number of people

that a newly infected person will directly infect is equal to 1.

Finally (iii) characterizes the final herd immunity level (end-of-time proportion of

susceptible) denoted by s∞, where s∞ is a decreasing function of R0: the higher is R0,

the more violent and deadly is the pandemic. All this is consistent with intuition and

observations of actual pandemics.

Figure 1 gives a graphical representation of the dynamics of the pandemic in the

plane (s, i). At the very beginning (when t → −∞) the point (s(t), i(t)) is close to

(1; 0). When t increases s(t) decreases, and i(t) first increases then decreases. At the

end of the pandemic (when t→ +∞) the point (s(t), i(t)) is close to (s∞; 0).

3 Shortsighted lockdown policies.

We now assume that the “government” ruling this society (aka a public authority able

to impose some lockdown policy) is able to act at a given period t0.9 Social inter-
9This is in line with Schlickeiser & Kröger (2021). They assume that the pandemic, while in infancy,

is taken into account from some given date denoted by “0”, equivalent to our t0: at this date there is a
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actions, namely “social distancing”, can be modified by law and public punishments

(fines, etc.) decided by the government. We define a shortsighted lockdown policy as

the capacity by the government to replace the parameter β0 by β lower than β0 over a

limited and definite interval of time: it is supposed to be put in place in t0 and ends in

period T. It negatively affects the reproduction number which becomes R = β
γ

instead

of R0 = β0
γ

during the interval (t0, T ). This interval is the policy duration. After T, the

reproduction number is back to its “natural” value. The stricter the lockdown policy,

the lower β and the lower the reproduction number. It is thus controlled by the public

authority and represents its lockdown policy instrument. We do not consider a repro-

duction number R that varies continuously over time (as in optimal control), as this is

not a realistic policy. As a lockdown policy is imposed on individuals, communication

and persuasion are critical. It imposes simple messages and imposing social distancing

rules that vary every day would not be collectively understood and followed. True, the

parameters of a lockdown policy can vary infrequently. Since we reason in a determin-

istic framework, modelling such a strategy of succeeding different lockdown parameters

would complexify the formal analysis without leading to qualitatively different policy

lessons. A “shortsighted” policy is such that the consequences of this policy after T

until the end of the pandemic are not taken into account by the policymaker.

3.1 Short-term dynamics of the pandemic with lockdown pol-

icy.

Assume that a decision of lockdown or general social distancing is taken at date t0 ∈ R,

before the epidemic attains its maximum, i.e. s (t0) > 1
R0

. A lockdown policy decided in

instant t0 consists in setting a new reproduction number R which applies to the period

from t0 onwards up to T . There are two periods to be distinguished in the evolution of

the pandemic until the end of the lockdown:

– Before t0, the reproduction number is R0 and the dynamics is governed by Eqs.

(5)-(7).

small but positive number of infected people. This amounts to consider the pandemic at “its infancy”.
The susceptible proportion is close to 1 and the infection number is close to 0.
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– In the interval between t0 and T , the reproduction number is R = β/γ, with

R < R0, the dynamic system capturing the dynamics of the pandemic after t0 becomes

ds

dt
= −βi (t) s (t) (12)

di

dt
= βi (t) s (t)− γi (t) (13)

dr

dt
= γi (t) (14)

with β < β0.

In short, the dynamics of the pandemic starts as in Figure 1, being governed by R0.

When s (t0) is reached, it bifurcates as it is then governed by R, up to T . s (t), i (t),

r (t) will be denoted by sR (t), iR (t), rR (t) for t ∈]t0, T ] when it will be necessary to

stress their dependency to R. The laws of motion of the three variables s (t) , i (t) and

r (t) under a temporary lockdown policy are specified in the following

Lemma 2. Assume that the reproduction number is R0 = β0
γ

on t < t0 and R =β
γ

on t ∈ [t0;T ], with R < R0, and s (t0) > 1
R0

, i.e. t0 is before the natural peak of the

epidemic is reached. Assume also that s (T ) < 1
R , i.e. T is after the lockdown-related

peak.

(i) The dynamics of the pandemic until the end of the lockdown is given by the

following sets of equations:

For t < t0, the dynamics is given by eqs. (8)-(10).

For t ∈ [t0,T ],

r (t) = r (t0) + 1
R

ln s (t0)− 1
R

ln s (t) (15)

i (t) = i (t0) + s (t0)− s (t) + 1
R

ln s (t)− 1
R

ln s (t0) (16)

∫ s(t0)

s(t)

1
βs
[
i (t0) + s (t0)− s+ 1

R ln s− 1
R ln s (t0)

]ds = t− t0. (17)

t 7→ s (t) is a decreasing function, and t 7→ r (t) is an increasing function.
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(ii) If R ≥ 1
s(t0) , then on t ≤ T the proportion of infected individuals i(t) is first

increasing, then decreasing. It is maximal when s (t) = 1
R .

If R < 1
s(t0) , then i(t) is maximal at t = t0 . It is decreasing on t ∈ [t0, T ].

(iii) For R′ > R, the curve (sR′ (t) , iR′ (t)) t≥t0 is strictly above (sR (t) , iR (t)) t≥t0
in the plane (s, i), except a unique common point at (s (t0) , i (t0)).

R 7→ s(t) = sR (t) is a decreasing function of R.

Proof. See Appendix A.2.

1100

Figure 2: Variations of i with respect to s in the plane (s, i) with decision at date t0

(i) shows the dynamic impact of the lockdown policy. It obviously has no impact

over the period before t0. Given the number of susceptible s (t0), the dynamics of the

pandemic during the policy period is governed by a similar set of equations than in the

previous period but depending on R. Figure 2 gives a graphical representation of the

dynamics of the pandemic with a lockdown of reproduction number R, beginning at t0
and ending at T .

(ii) tackles the impact of the policy reproduction number R over the interval [t0, T ]

on the dynamics of i(t). It is either non-monotone or decreasing, depending on R.

16



If, given the initial number of susceptible in t0, the reproduction number R is not

too low, i(t) is first increasing, then decreasing. The explanation is similar as the

one given above for the dynamics driven by R0. If R is sufficiently high, higher than

1/s (t0), the contamination policy is too lenient to allow for an immediate decrease

in the number of infected. This latter number first continues to grow and reaches a

maximum when the susceptible proportion attains 1/R. It is important to note that

this value does not depend on the other parameters of the model, in particular depends

neither on t0 nor on T . If, on the other hand, the policy number R is low enough

(lower than 1/s (t0)), i(t) is immediately decreasing. The social distancing is strong

enough, R being sufficient small, to overcome the existence of a relatively large pool of

agents susceptible of becoming infected and thus the easy spreading of the pandemic,

so as to trigger an immediate decrease in the number of infected. The lower R, the

steeper the slope of the increasing function relating the proportion of susceptible and the

proportion of infected. Such a strong lockdown policy can be dubbed a “(almost-)zero

Covid policy”: the policymaker wants to see the pandemic decreasing immediately and

forcefully, despite the immediate negative economic consequences of this policy with

the hope of getting rid of the pandemic and be able to resume a “normal” life with no

lockdown and a low number of deaths. Notice that the higher is t0, the lower is s (t0),

the initial pool of susceptible, making the spreading of the pandemic more difficult.

According to (iii), the number of susceptible in a given instant is a decreasing

function of R. This is consistent with intuition: the pool of susceptible agents decreases

more rapidly when the reproduction number is high as the virus spreads more rapidly:

the proportion of susceptible sR′ (t) related to R′ is consistently below sR (t) when

R′ > R. Consequently sR (T ) > sR′ (T ): a higher policy-chosen reproduction number

leads to a lower end-of-lockdown proportion of susceptible and a higher mortality record.

Furthermore there is no “catching-up” effect: a lenient lockdown policy (corresponding

to R′) cannot reach a combination (s, i) reached by a stricter policy (corresponding to

R). Since the curves (sR′ (T ) , iR′ (T ))t≥t0 and (sR (T ) , iR (T ))t≥t0 with R 6= R′ have

a unique common point at (s (t0) , i (t0)), a given pair (s, i) can be attained by one

lockdown policy only and at one instant T only.
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3.2 Shortsighted optimal lockdown policies.

The previous subsection highlights how a lockdown policy aiming at reducing the repro-

duction number of the pandemic affects its dynamics and the proportion of recovered

individuals at any period. Turning to the normative aspect of a lockdown policy, we

now tackle the dilemma facing the policymaker: a lockdown policy mitigates the health

consequences of the pandemic but negatively affects the economy by restricting the so-

cial interactions between economic agents. In other words, there is a trade-off between

economic and health objectives and a responsible government must solve this trade-off:

how to optimally live with a pandemic?

In order to investigate the issue of defining the optimal lockdown policy in the

presence of economic costs, we take for given the starting instant t0 and ending instant

T . Fixing the duration of a lockdown policy makes sense. The policymaker may

be constrained by political conditions such as the term of her mandate or subject to

economic pressures to end the policy before a certain date. She may be unable to act

after a certain period for constitutional reasons or she may be unable or unwilling to

anticipate the entire future of the pandemic. Above all, it corresponds to the very

plausible case when the policymaker is myopic and does not foresee beyond a given

date. The dynamics of a pandemic is such that the most of the contamination happens

in a very short period and not much is lost by fixing this period. The marginal gains

of increasing the policy period beyond a plausible duration may be limited. Lastly,

addressing the optimal lockdown problem with two instruments in a non-linear system

such as the one governing a pandemic is quite complex and likely to obscure the picture

for little analytical gains. We will address this issue in Section 4.3, once important

results, easy to understand and empirically relevant, have been obtained. In brief, it is

reasonable to first reason with T given and focus on the lockdown policy-determined

reproduction number: it is the parameter which attracts the most attention and is

critical in the dynamics of the pandemic as proven above.

A shortsighted government limits its time horizon to the end of its lockdown policy

T . In the following section we will consider a farsighted government which considers

the entire future and therefore the after-lockdown dynamics of the pandemic, knowing
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that her lockdown policy affects this dynamics. This distinction is relevant. When

observing the behavior of governments during the Covid-19 pandemic, one notices that

policymakers regularly adopted a position of advocating before public opinion that the

decided lockdown policy put in place would be sufficient to return to “normal life” and

the economy would soon “pass the corner”. Public opinion too seems to be oblivious of

the long-term duration of a pandemic and such an attitude affects the decision process

of the policymaker.

We consider the simple case of a pandemic developing without meeting any other

barrier than the social distancing measure adopted by the government. In particular,

there is no health constraint such as the availability of properly equipped hospital beds

and there is no change in the therapy against it. The health system is structurally able

to “properly” deal with patients. Formally, we assume that the infection fatality rate

δ > 0 is constant, independent of circumstances and exogenously given.

The cumulated mortality rate in the population is mT = δ(r(T )+i(T )) = δ(1−s(T ))

where 1 − s(T ) denotes the fraction of the population which eventually recovers (or

dies) from the pandemic after having being infected before T . Denoting by N the

total population, the final number of deaths due to contaminations before T is MT =

NmT . A lockdown policy consists in adopting various compulsory social distancing

measures so as to affect the reproduction number of the pandemic at any given period

of time. Assuming that the inverse link between social distancing and this number is

deterministic amounts to say that the government controls the reproduction number R.

We assume that a decision of lockdown or general social distancing is taken at date t0,

before the epidemic attains its maximum, i.e., s (t0) > 1
R0

and consists in setting a single

reproduction rate which applies to any period from t0 onwards: R (t) = R,∀t ∈ [t0;T ].

As we abstract from any shock, including on the biological characteristics of the virus,

and any change in government, this assumption is reasonable. MT depends on R, so

we write MT = MT (R).

A benevolent policymaker is willing to limit the amount of casualties of the pandemic

by means of an active control of the reproduction number. Given her shortsightedness,

the policymaker takes into account the cumulated mortality MT (R) due to contami-
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nations occurring up to T . This mortality record is affected by her choice of R. It is

defined as

MT (R) ≡ δN (iR (T ) + rR (T )) = δN (1− sR (T ))

A lockdown policy also incurs economic losses: social distancing affects both the sup-

ply and the demand sides of the economy. On the one hand, some firms cannot open,

some workers cannot work as efficiently as in “normal” times, or are out of work. On

the whole the capacity to produce goods and services is impaired. On the other hand,

some goods are not demanded because the social distancing prevents their consump-

tion. Consumption and investment are depressed and the well-being of individuals is

negatively affected by the desire to control the pandemic by means of social distanc-

ing measures. The goverment trades off the economic losses and the sanitary adverse

consequences of the pandemic. Formally the welfare function of the decision-maker is

assumed to be

VT (R) = (T − t0) y (R)− λMT (R) = (T − t0) y (R)− λδN (1− sR (T )) (18)

where y (R) is an aggregate output index such as GDP per unit of time, depending

on the lockdown parameter R, and λ ∈ [0;∞) is the weight put on mortality relative

to economic activity (as measured by y). It captures the “value of life” as assessed

by the policymaker relative to the economic target of boosting the economy.10 The

function y (R), in addition to the reduction of activity directly due to the reduction in

mobility, may capture the change in the production process decided when the lockdown

is imposed. Here we abstract from distinguishing the various channels which shape the

relationship between y and R and directly reason on the reduced form given by y (R).

During the pandemic, the economic index y is an increasing concave function of R :

the more lenient the lockdown policy, the higher the aggregate output index. We assume

that the marginal gain of relaxing the lockdown policy (increasing the reproduction

number) is diminishing with this number and an immediate impact of R on y without
10This welfare function, displaying an economic argument and a ”loss of life” one, is similar to the

functions used by Acemoglu et al. (2021) and Rowthorn and Maciejowski (2020).
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lagged effects. The lowest value of y is obtained when the social distancing is at its

maximum, that is, when R is equal to 0: economic losses are at their maximum. We

consider that y (0) is equal to 0 since then all activities, including productive ones, are

frozen.11 Thus y (R) can be seen as the gain from relaxing the lockdown parameter from

0 to R. When R increases, social distancing is relaxed, the economy partially recovers

and losses are reduced. We assume y is a concave function of R, with y′ (0) = +∞.

When R equals R0, this corresponds to the “hands-off” regime characterized by the

natural reproduction number and there are no economic losses.

The first term in (18) corresponds to the cumulative economic effect of the decision

R from t0 up to T . The second term corresponds to the health cost of the pandemic,

measured in the total of deaths due to the pandemic up to date T . The optimal policy

consists in choosing Ropt maximizing the welfare function, that is

Ropt = arg max
R≤R0

VT (R) (19)

This optimal value generates a mortality record, an economic loss and thus a given level

of welfare. On the whole, the global configuration with optimal policy is characterized

by (Ropt,MT (Ropt) , y (Ropt) , VT (Ropt)). We could equivalently say that the decision-

maker wants to minimize the short-term loss due to the pandemic and the lockdown

LT (R) = (T − t0) (y (R0)− y (R)) + λMT (R) . (20)

We are able to offer the following

Proposition 1.

There exists λ0 ≥ 0, with λ0 ≤ (T−t0)y′(R0)

−δN
(
∂sR(T )
∂R

)
R=R0

, such that:

(i) Ropt is equal to R0 for λ ∈ [0;λ0] and Ropt < R0 for λ > λ0.

(ii) Ropt is a non increasing function of λ for λ > λ0, with lim
λ→∞
Ropt = 0.

Proof. See Appendix A.3.
11We neglect household production.
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This proposition states that the optimal lockdown policy consists in having a low

reproduction number when the ”value of life” weight in the welfare function is suffi-

ciently high. When the value of life weight is close to 0, the lockdown optimal policy

is the laissez-faire policy, corresponding to no imposition of social distancing measures.

This comes from the fact that the marginal loss of imposing a stricter policy is high

while the marginal welfare gain in terms of saved life is negligible, given that λ is low.

When the weight is sufficiently high, the optimal value of Ropt starts decreasing. The

more the policymaker cares about the mortality record of the pandemic relative to the

adverse economic consequences of social distancing (the higher λ), the stricter is the

chosen lockdown. When λ tends to infinity, Ropt tends to 0. When the value of life is

arbitrarily large, the best policy is to neglect the economic costs for the sake of saving

lifes by imposing an extremely severe lockdown. By a similar reasoning, notice that

Ropt is a decreasing function of the fatality rate12 δ.13

4 Farsighted policies.

We now investigate the pandemic and its relation wich lockdown policy in a long-term

perspective. Compared to a short-term perspective, three differences can be introduced.

Firstly, the delayed consequences of a lockdown policy are taken into account: Given

the dynamic nature of the problem, anything happening in a given time interval impacts

on the subsequent evolution of the pandemic. Secondly, we may relax the assumption

made before that solely one lockdown with one reproduction number is fixed by the

policymaker. Lastly, it may happen that the post-policy reproduction number differs

from the initial one, being equal to R′0 instead of R0. In the sequel, we focus on the first

difference: the policymaker deciding in t0 takes into account the delayed impact after

the end-of-policy instant T of her lockdown policy. Said in other words, she may be

qualified as “far-sighted”. We maintain the assumption that the policymaker chooses a

unique reproduction number and we assume that the post-policy reproduction number
12The Ebola epidemics which is highly deadly leads to the most extreme lockdown measures.
13Rowthorn and Maciejovski (2020), based on simulation of the model, find that a 10-week lockdown

is optimal if the value of life for Covid-19 victims exceeds 10 million pounds.
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is the “natural” one: R′0 = R0.

4.1 Long-term dynamics of the pandemic with lockdown pol-

icy.

Given a lockdown policy with a constant R over the duration period: R = β
γ

on

t ∈ [t0;T ], for t < t0, the dynamics is given by eqs. (8)-(10). For t ∈ [t0,T ], it is given

by eqs. (15)-(17). For t > T , it is given by the following equations

r (t) = r (T ) + 1
R0

ln s (T )− 1
R0

ln s (t) (21)

i (t) = i (T ) + s (T )− s (t) + 1
R0

ln s (t)− 1
R0

ln s (T ) (22)

∫ s(T )

s(t)

1
β0s

[
i (T ) + s (T )− s+ 1

R0
ln s− 1

R0
ln s (T )

]ds = t− T. (23)

s (t), i (t), r (t) will be denoted by sR,T (t), iR,T (t), rR,T (t) for t > T when it will be

necessary to stress their dependency to R and T . Eqs. (21)-(23) are similar to (15)-(17)

with the crucial difference that the notations r (T ), i (T ) and s (T ) are introduced.14

(21)-(23) depend on s (T ) and i (T ), that is on the outcome of the policy fixing R over

the interval t ∈ [t0, T ]. This proves the delayed consequences of a lockdown policy after

it has stopped. In the two following propositions, we investigate the dynamics of the

pandemic after T .

Once a lockdown policy has ended, either the proportion of infected pursues its

decline (at a different pace) or it reverts to increasing again. The latter case refers to

a “rebound” which is a very common feature in actual pandemics. For example, in

many countries the Covid-19 pandemic was characterized by several rebounds, not all

due to the advent of variants of the original virus. Thus it is important to understand

under which circumstances such a reversal happens in the absence of a renewed source

of infection such as a new virus or a variant of the current one. This is answered in the
14They replace r(t0), i (t0) and s(t0) respectively, and R is replaced by R0.
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following

Proposition 2.

(i) If s (T ) > 1
R0

, there is a rebound of the epidemic after T and i(t) is maximal on

t ≥ T when s(t) = 1
R0

.

If s (T ) ≤ 1
R0

, there is no rebound of the epidemic after T and i(t) is maximal on

t ≥ T when t = T .

(ii) Setting R̃t0 =
ln(s(t0))−ln

(
1
R0

)
i(t0)+s(t0)− 1

R0
, we have:

1. For R ≤ R̃t0, there is necessarily a rebound after T for any value of T .

2. For R > R̃t0, there exists a critical value Tmin(R), such that:

- There is a rebound after T if T < Tmin(R).

- There is no rebound after T if T ≥ Tmin(R).

Proof. See Appendix A.4.

Figure 3 illustrates the case of dynamics including a rebound, Figure 4 the case

without a rebound.

1100

Figure 3: Rebound
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Figure 4: No rebound

(i) focuses on the impact of s (T ) = sR (T ) and therefore implicitly of R. It proves

that if the susceptible proportion s(T ) at the end of the lockdown is above the “natural”

peak of the pandemic, there will be a rebound when the reproduction number switches

back to R0. The pair (R, T ) is such that the control over the pandemic is not sufficient

to pass this peak. The pool of people susceptible to be infected after the lockdown

is too large and the contamination process starts increasing again after T : a rebound

occurs. Notice that the post-T function between s (t) and i (t) shares the same property

as in the case without lockdown: its peak is at 1
R0

. Therefore if s (T ) is higher than
1
R0

, it implies that the number of infected people increases after T when the susceptible

proportion pursues its decline. It is solely if s (T ) is smaller than 1
R0

that the two

numbers decline together: no rebound occurs.

(ii) focuses on the impact of R. If the reproduction number is higher than a critical

value denoted by R̃t0 , a rebound is avoided for T given and sufficiently high: both

parameters conjugate to avoid a rebound after the lockdown policy. However, if R

is too low, the control of the pandemic whatever the duration length is insufficient

and it rebounds. This is due to the fact that the end-of-policy susceptible proportion

(the pool of people available for infection) is high enough so as to let the natural
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reproduction number have a huge impact on the number of infected and lead to a

rebound. This counter-intuitive result casts doubt on a policy the severity of which is

meant to efficiently control the pandemic. This is true in the short-term but eventually

it will undo itself. This is particularly true to a “zero-Covid policy” which cannot last

for ever given its economic costs. Sooner or later, an extremely severe lockdown policy

(implying a very low reproduction number) will stop before the complete eradication of

the virus (which can only happen at the end-of-time, that is, when t is arbitrarily large).

At the end of the severe lockdown period, the pool of susceptible will be close to s(t0),

and the dynamics of the pandemic governed by the natural reproduction number R0

and given by Proposition 1.15 On the whole, society suffers from a large economic cost

due to the severity of the lockdown policy without much impact on long-term mortality.

This is unknown (or neglected) by the short-sighted policymaker who solely looks at the

outcome at the end-of-policy instant T but this unpleasant conclusion appears clearly

when a long-term perspective is adopted.

Turning to the eventual impact of a lockdown policy on the end-of-pandemic sus-

ceptible proportion we offer the following

Proposition 3.

(i) At the end of the pandemic, (s, i, r) = (s∞ (R, T ) , 0, r∞ (R, T )), with r∞ (R, T ) =

1− s∞ (R, T ) and s∞ (R, T ) given by

R0 = ln (s (T ))− ln (s∞ (R, T ))
i (T ) + s (T )− s∞ (R, T ) , 0 < s∞ (R, T ) < 1. (24)

s∞ (R, T ) < 1
R0

, and s∞ (R, T ) is an increasing function of T and a decreasing function

of R0.

(ii) The end-of-pandemic susceptible proportion s∞ (R, T ) is always higher than

s∞ (R0). If T is sufficiently large, s∞ (R, T ) is a non-monotonic function of R, it is

increasing on R < R̃t0, and decreasing on R > R̃t0.
15The case of Australia which pursued a zero-Covid strategy against Covid-19 is exemplary. Its

prime minister Scott Morrison has declared on August 23rd 2021: “This is not a sustainable way to live
in this country”. See https://www.economist.com/asia/2021/08/28/australia-is-ending-its-zero-covid-
strategy?utm campaign=coronavirus-special-edition&utm medium=newsletter&utm source=salesforce-
marketing-cloud&utm term=2021-08-28&utm content=article-link-1&etear=nl special 1
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Proof. See Appendix A.5.

(i) makes clear that a lockdown policy always has an impact on herd immunity, that

is, the end-of-pandemic susceptible proportion. It suffices to compare (24) with (11):

in the former equation i (T ) = iR(T ) and s (T ) = sR(T ) which depend on the policy

stance (R, T ) now appear. The longer the lockdown policy lasts, the better it is in

terms of herd immunity, which is consistent with intuition. This is due to the fact that

both i (T ) and s (T ) decline with T , when T is large enough. It is logically a decreasing

function of R0 as this number governs the post-policy dynamics: a higher reproduction

number applying after T leads to a worsening of the pandemic in the post-lockdown

period and eventually a higher fatality record.

(ii) proves that any lockdown policy, however light (a high R) and/or short (a

small T ), leads to an improvement in the herd immunity, measured by the terminal

susceptible proportion. There is never a perverse long-term effect of an active policy.

Yet it does not mean that the terminal susceptible proportion is a monotone function

of R. This is due to the possible presence of rebounds. As we have seen above, a tight

lockdown policy (R low) may lead to a large rebound whereas a not so tight policy leads

to a small rebound. The ending of the large rebound may thus be at the left of the

ending of the small rebound. The relationship of s∞ (R, T ) is a non-monotone function

of R peaking at R̃t0 if T is large. In the absence of rebound (R > R̃t0), the relationship

is decreasing: a stricter lockdown policy improves the terminal susceptible proportion.

With rebound (R < R̃t0), the relationship is increasing: a stricter lockdown generates

a higher rebound.

Notice that these two propositions can easily be adapted for the case R′0 6= R0.

4.2 Farsighted optimal lockdown policy.

In this subsection, we again adopt a normative point of view. Given the delayed con-

sequences of a policy stance (R, T ), a far-sighted policymaker (adopting a long-term

perspective on the pandemic) should take them into account. The total economic cost

of a lockdown policy (R, T ) is equal to (T − t0) (y (R0)− y (R)) . This cost is subject

27



to two opposite forces: a longer duration increases economic losses whereas a higher re-

production number R decreases them. After T , since the reproduction number returns

to R0 and no lagged economic effect of a policy fixed lockdown is assumed, there is no

economic loss due to lockdowns. On the opposite, the health impact of the pandemic

still goes on, based on s (T ) and R0, as shown in (21)-(23).

Extending (20), the decision-maker’s objective is now to minimize losses over the

entire future (for T given):

L∞ (R) = (T − t0) (y (R0)− y (R)) + λM∞ (R) (25)

with M∞ (R) = Nδr∞ (R) = Nδ (1− s∞ (R, T )). The properties of the optimal deci-

sion of a farsighted policymaker are given in

Proposition 4.

Let Ropt
∞ be the value of R minimizing the long-term loss L∞ (R) on 0 ≤ R ≤ R0, for

T and λ given.

(i) For T given, there exists λ′0 ≥ 0, with λ′0 ≤
(T−t0)y′(R0)
−δNs′∞(R0) , such that Ropt

∞ is equal to

R0 for λ ∈ [0;λ′0], and Ropt
∞ < R0 for λ > λ′0 , where Ropt

∞ is a non increasing function

of λ for λ > λ′0.

(ii) For λ given, λ > λ′0, we have Ropt
∞ ≥ R̃t0 if T is sufficiently high.

Proof. See Appendix A.6.

(i) is a long term version of proposition 1 and is similarly explained.

(ii) assuming T sufficiently high, the long-term optimal reproduction number is

above a positive value R̃t0 for any value of λ. This results from the desire of the

farsighted policymaker to avoid a rebound after T , an event which is not anticipated

by a shortsighted policymaker. A rebound leads to an increase in mortality and a

lower herd immunity level. Avoiding a rebound makes sense especially when the life

argument in the loss function is given a higher weight. According to Proposition 2 (ii),

if T is sufficiently high, then there is a rebound if R ≤ R̃t0 , and there is no rebound

if R > R̃t0 . This implies that the far-sighted policymaker will choose a reproduction
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number Ropt
∞ higher than R̃t0 . In other words, an optimal lockdown policy is such that

it rules out rebounds.

4.3 Farsighted optimal pandemic policy.

In this subsection we extend our normative approach to lockdowns and define an optimal

pandemic policy as the joint choice of duration and lockdown severity parameters.

Choosing a pandemic policy consists in choosing a value R ∈ (0, R0) and a value

T ∈ ]t0,∞[. Up to now, we considered the policy duration T − t0 as given (and we

refered to a lockdown policy). It is interesting to relax this assumption as interrogations

about the duration of lockdowns were rife during the Covid-19 pandemic. To shed some

light on the role of policy duration, we consider the following problem. Supposing the

policymaker wishes to attain collective immunity consistent with a given mortality

M∞, i.e. equivalently with a certain final susceptible proportion s∞ = 1
R0
− ε, which

pair (R, T ) does she choose? By considering an objective in terms of reaching a given

collective immunity ratio we do not oppose here the health objective to the economic

one. Instead we focus on a possible trade-off between the duration of a lockdown policy

and its stringency. It may be argued that the collective immunity level should be

reached in the minimal time thanks to a “tough” lockdown policy, given the impatience

of the people to get rid of the pandemic as soon as possible, rather than applying

a more lenient lockdown policy (a higher R) on a longer period. Is it true? Is the

shortest duration policy optimal? We answer this problem in the following proposition.

We denote by (Cε) the curve in the plane (s, i) representing the end of lockdowns

(sR(T ), iR(T )) which lead after release of lockdown to s∞ (R, T ) = 1
R0
− ε.

Proposition 5. Let ε ∈
(
0; 1
R0

)
be given.

(i) There exist an infinity of couples (R, T ) such that s∞ (R, T ) = 1
R0
− ε. More

precisely, there exist R1 and R2, R2 > R1 and a function Tε such that

s∞ (R, T ) = 1
R0
− ε⇔ R ∈ (R1,R2) and T = Tε (R) .

Moreover, limR→R1+ Tε (R) = limR→R2− Tε (R) = +∞.
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(ii) We denote by
(
R̂ε, T̂ε

)
the policy pair which generates the minimal economic

cost and by
(
R◦ε, T

◦
ε

)
the policy which allows to reach s∞ = 1

R0
−ε in the minimal time.

Then R̂ε > R
◦
ε and T̂ε > T

◦
ε .

Proof. See Appendix A.7.

1100

Figure 5: Minimal economic cost to reach s∞ = 1
R0
− ε

(i) states that the objective can be attained by an infinite number of combinations of

duration and reproduction number (but not all reproduction numbersR are admissible).

This is due to the adverse consequences of lengthening the policy interval (increasing T )

and lightening the lockdown intensity (increasing R). These different lockdown policies

cannot be determined according to health considerations only, since they do not have

the same economic impact. This raises the question of which policy is best from an

economic point of view. (ii) shows that the shortest lockdown policy consistent with

a health objective generates a higher economic cost than is necessary as it is linked

to a relatively severe lockdown policy, i.e. a small reproduction number. Despite the

fact that such a policy does not last long it harms too much economic activity. The

cost-minimizing policy implies a higher reproduction number imposed over a longer
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duration: some patience is rewarding. The conclusion is that tackling a pandemic

consists in balancing policy duration and severity of a lockdown.

Figure 5 illustrates this proposition. The two dotted curves represent the curves

associated with R1 and R2. The lower curve reaching 1
R0
− ε represents (Cε). Any

trajectory corresponding to a lockdown policy with s∞ (R, T ) = 1
R0
− ε must terminate

on (Cε) at the end of the lockdown. Afterwards, the pandemic is governed by R0 and

follows (Cε). The dashed curve corresponds to the time-minimizing trajectory and the

continuous curve to the cost minimizing one. Since it is above the dashed curve, it

corresponds to a higher reproduction number (from Proposition 2(iii)). It reaches the

same mortality record, but it lasts longer.

Proposition 5 tells us that indeed there is an optimal pandemic policy to reach a

given herd immunity level. We can use this result to prove the following

Proposition 6. There is an optimal pandemic policy (R∗, T ∗) such that L∞ (R, T ) is

minimized.

Proof. See Appendix A.8.

Proposition 6 claims that the policymaker, acting at t0, is able to play on both

parameters of the policy stance so as to minimize the long-term consequences of the

pandemic, consistent with herd immunity. Here we do not impose the level of herd

immunity to be reached. This level is endogenously derived: it is not necessarily the

highest possible one but it is optimal when the adverse economic consequences of a

pandemic policy are taken into account.

5 Conclusion.

This paper offers a theoretical analysis of the optimal decision about social distancing

and possibly duration taken by a policymaker confronted with a pandemic and facing a

dilemma between reducing the economic costs of lockdown and minimizing the mortality

rate through social distancing.
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Using the workhorse model of epidemiology, namely a deterministic version of the

SIRD model, we first look at the dynamics of the pandemic in the absence of any policy

action aiming at controlling the pandemic. We obtain a non-monotone relation between

the infected proportion and the susceptible proportion which peaks at a susceptible

proportion equal to the inverse of the reproduction number. This very simple expression

plays a critical role in the understanding of the pandemic dynamics when a lockdown

policy is put in place.

A pandemic policy is defined by three parameters: the instant of decision, the extent

of lockdown which affects the reproduction number and the duration of the lockdown.

We show that the dynamics of the pandemic is strongly affected by these variables. Such

a policy is designed so as to trade off the health benefits and the economic losses that it

generates. Solving this trade-off amounts to search for the optimal lockdown policy to

be followed. This issue is the core of this paper. We distinguish between a short-term

perspective, when the policymaker is short-sighted and limits her time horizon to the

ending of the lockdown, and a long-term perspective, when she is far-sighted and takes

into account the posterior consequences on the dynamics of the pandemic after this

ending, up to infinity.

We show that there can be rebounds in the pandemic happening either when the

policy duration is too short and/or when the lockdown policy reproduction number

is too low. A far-sighted policy takes into account these rebounds. The existence of

rebounds explains why a “zero-Covid” policy, whatever its duration, is unsustainable

as it eventually leads to large rebounds with a very low terminal susceptible proportion

as well as huge economic costs. Yet, even with rebounds, any policy stance leads to a

higher collective immunity relative to a non-interventionist position and thus a weak

improvement. The policymaker may choose not to intervene by means of imposing some

social distancing measure if the relative value of life is sufficiently low. When the param-

eter capturing this relative value in the welfare function characterizing the policymaker

is above a certain threshold, the magnitude of the lockdown depends positively on this

parameter: the chosen reproduction number is a decreasing function of this parameter.

This is true in both perspectives. The optimal long-term optimal reproduction number
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taking into account the possibility of rebounds mitigates the strictness of lockdown

in order to avoid these rebounds or limit their amplitude. If the duration period is

sufficiently long, the optimal reproduction number is large enough so as to avoid re-

bounds. It may therefore be that the long-term optimal lockdown is more lenient than

the short-term optimal one, for a given lockdown duration.

In the same vein, it is not true that the shortest duration combined with a strict

lockdown measure consistent with reaching a given herd immunity target is optimal.

A more lenient policy (a chosen higher reproduction number) enforced over a longer

duration period dominates such a policy as it rules out rebounds in the course of the

pandemic, eventually reaching the herd immunity target and generates a lower total

economic cost. Living with the pandemic may mean enduring a milder lockdown over a

longer period. There exists an optimal pandemic policy, that is, a pair of reproduction

number and duration. It leads to a herd immunity level which is not the highest

possible one. This is due to the public necessity to trade-off the economic losses and

the mortality gains attached to a pandemic policy. On the whole, this paper makes

clear the dire consequences of policy errors made policymakers either because they are

myopic or willing to eradicate a pandemic once it has been identified as such.

There exist many different instruments to tackle an expanding pandemic, in particu-

lar tracking, testing, appropriate individual equipements as masks and finally, isolation.

A mix of measures is likely to be what defines an adequate policy toward the control

of a pandemic. Any such measures are likely to have opposite health (positive) and

economic (negative, if only because of direct costs) impacts and therefore meet our

assumptions. Our policy instrument can thus be understood as a “composite” public

health instrument (a combination of measures) for tackling a pandemic.

The model assumes that the population is homogeneous. It does not take into

account the reaction of the population to the lockdown decision and assumes a simple

framing of economic and sanitary losses. As it is, it proves an adequate basis for

understanding the basic policy issues related to the control of a pandemic, in particular

in relation with economic consequences of a lockdown policy when stylized laws of

the dissemination of a pandemic are explicitly taken into accunt. The model can be
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complexified so as to take into consideration different assumptions. Relaxing these

assumptions as well as analyzing lockdown policy in variants of the SIR model which

have been offered in the epidemiology literature is left for further research.16

Finally, the model rules out uncertainty. Epidemiologists have developed a stochas-

tic approach to capture the randomness in the matching process between infected and

susceptible people. This is when the number of infected is very low and the law of

large numbers does not apply (see Britton (2010)). We do not claim that the results

obtained here (in particular the self-defeating nature of an extremely severe policy) are

transferable to a stochastic approach. The strength of a deterministic approach is to

obtain analytical results which clarify the impact of a lockdown policy, without resort-

ing to simulation techniques. It appears that these results are useful to understand the

pitfalls of a pandemic policy, in particular the adverse consequence of a short-sighted

lockdown policy.

A Appendix

A.1 Proof of Lemma 1

We know that:
dr
ds

= γi
−β0is

= − 1
R0s

, i.e., ds
R0s

= −dr

∀t ∈ R,
∫ s(t)
s(−∞)

ds
R0s

= −
∫ r(t)
r(−∞) dr, thus 1

R0
(ln s(t)− ln s(−∞)) = − (r(t)− r(−∞))

i.e., ∀t ∈ R, 1
R0

ln s(t) + r(t) = 1
R0

ln s(−∞) + r(−∞).

The boundary conditions s(−∞) = 1, r(−∞) = 0 give 1
R0

ln s(t) + r(t) = 0, ∀t ∈ R,

which gives (8).

Similarly, we know that
di
ds

= β0is−γi
−β0is

= −1 + 1
R0s

, i.e., di =
(
−1 + 1

R0s

)
ds

∀t ∈ R,
∫ i(t)
i(−∞) di =

∫ s(t)
s(−∞)

(
−1 + 1

R0s

)
ds, thus i(t) − i(−∞) = s(−∞) − s(t) +

16On the need to combine epidemiology and economics, Murray (2020, p.106) writes: “As an epi-
demiologist, I ask economists interested in Covid-19 to build on their expertise and ours. Indeed, the
efforts of economists in tackling the economic sequelae of this pandemic are vitally needed, as are the
development of tools for tracking, predicting, and preventing future pandemics based on understanding
the flow of people, goods, and other economic activity around the globe.”
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1
R0

(ln s(t)− ln s(−∞)), i.e., i(t) + s(t)− 1
R0

ln s(t) = i(−∞) + s(−∞)− 1
R0

ln s(−∞).

The boundary conditions s(−∞) = 1, i(−∞) = 0 give i(t) + s(t) − 1
R0

ln s(t) = 1,

∀t ∈ R, which gives (9).

ds
dt

= −β0i(t)s(t) = −β0s(t)
[
1− s(t) + 1

R0
ln s(t)

]
thus ds

−β0s

[
1−s+ 1

R0
ln s
] = dt

i.e., t =
∫ s(t)
s(0)

ds

−β0s

[
1−s+ 1

R0
ln s
] =

∫ s(0)
s(t)

ds

β0s

[
1−s+ 1

R0
ln s
] .

t 7→ s(t) is a decreasing function since ds
dt

= −β0is < 0

t 7→ r(t) is an increasing function since dr
dt

= γi > 0,

so we have proven (i) of Lemma 1.

From i(t) = 1− s(t) + 1
R0

ln(s(t)), we get:

i′(t) = −s′(t) + s′(t)
s(t)R0

= −s′(t)
[
1− 1

s(t)R0

]
which is of the sign of 1 − 1

s(t)R0
since

s′(t) < 0. Then i(t) is increasing for s(t) ≥ 1
R0

(i.e. for t small), and i(t) is decreasing

for s(t) ≤ 1
R0

(i.e. for t larger).

Thus i(t) is maximal when s(t) = 1
R0

, which gives

imax = 1− 1
R0

+ 1
R0

ln( 1
R0

) = 1− 1
R0

[1 + ln(R0)], which proves (ii).

At the end of the epidemic, i = 0 thus 1 − s + 1
R0

ln s = 0, i.e., ln(s)
R0

= s − 1 then

R0 = ln(s)
s−1 . �

A.2 Proof of Lemma 2

Lemma 1 gives the dynamics for t < t0.

For t ∈ [t0, T ],
dr
ds

= γi
−βis = − 1

Rs , i.e., ds
Rs = −dr

∀t ∈ [t0, T ],
∫ s(t)
s(t0)

ds
Rs = −

∫ r(t)
r(t0) dr, i.e., 1

R (ln s(t)− ln s(t0)) = r(t0)− r(t)

di
ds

= βis−γi
−βis = −1 + 1

Rs , i.e., di =
(
−1 + 1

Rs

)
ds

∀t ∈ [t0, T ],
∫ i(t)
i(t0) di =

∫ s(t)
s(t0)

(
−1 + 1

Rs

)
ds

thus i(t)− i(t0) = − (s(t)− s(t0)) + 1
R (ln(s(t)− ln(s(t0))).
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ds
dt

= −βi(t)s(t) = −βs(t)
[
i(t0)− (s(t)− s(t0)) + 1

R (ln s(t)− ln s(t0))
]

thus ds

−βs[i(t0)−(s−s(t0))+ 1
R (ln s−ln s(t0))] = dt

i.e.,
∫ s(t)
s(t0)

ds

−βs[i(t0)−(s−s(t0))+ 1
R (ln s−ln s(t0))] = t− t0

To sum up, for t ∈ [t0, T ]:

r(t) = r(t0) + 1
R ln s(t0)− 1

R ln s(t)

i(t) = −s(t) + 1
R ln s(t) + i(t0) + s(t0)− 1

R ln s(t0)∫ s(t0)
s(t)

ds

βs[i(t0)+s(t0)− 1
R ln s(t0)−s+ 1

R ln s] = t− t0
This proves Eq. (15), (16) and (17). Moreover, t 7→ s(t) is a decreasing function and

t 7→ r(t) is an increasing function according to Eq. (12) and Eq. (14). This gives the

second part of Lemma 2 (i).

It is assumed that s(t0) > 1
R0

, thus the maximum of i(t) for t ∈]−∞; t0] is attained at

t0, thus maxt∈]−∞;T ] i(t) = maxt∈[t0,T ] i(t).

Moreover, on t ∈ [t0, T ], i′(t) = −s′(t) + s′(t)
Rs(t) = −s′(t)

[
1− 1

Rs(t)

]
with s′(t) < 0, thus

the sign of i′(t) is that of 1− 1
Rs(t) on t ∈ [t0, T ].

- If s(t0) < 1
R , then s(t) < 1

R ∀t ∈ [t0, T ], thus i′(t) < 0 ∀t ∈ [t0, T ]. The maximum of

i(t) is here attained at t = t0.

- If s(t0) ≥ 1
R , then since s(T ) < 1

R , there exists t ∈ [t0, T ], such that s(t) = 1
R . This

value of t gives the maximum of i(t).

This gives Lemma 2 (ii).

Now, we prove that ifR′ > R, the curve (sR′ (t) , iR′ (t)) t≥t0 is strictly above (sR (t) , iR (t)) t≥t0
in the plane (s, i), except a unique common point at (s (t0) , i (t0)).

We need to study i as a function of s. Since

iR(t) = i(t0) + s(t0)− sR(t) + 1
R ln (sR(t)/s(t0)) according to Eq. (16).

We set:

IR(s) = i(t0) + s(t0)− s+ 1
R

ln (s/s(t0)) . (26)

It is clear that s = sR (t)⇒ IR(s) = iR(t). It means that in the plane (s, i), the curve

(sR (t) , iR (t)) t≥t0 is the curve (s, IR(s))s≤s(t0).

We just have to prove that (s, IR′(s))s≤s(t0) is strictly above (s, IR(s))s≤s(t0) if R′ > R,
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except at s = s(t0).

IR′(s)−IR(s) = [i(t0)+s(t0)−s+ 1
R′ ln (s/s(t0))]− [i(t0)+s(t0)−s+ 1

R ln (s/s(t0))]

= 1
R′ ln (s/s(t0)) − 1

R ln (s/s(t0)) = ( 1
R −

1
R′ ) ln(s(t0)/s) > 0 if s < s(t0), since

1
R > 1

R′ .

Now we prove that sR′ (t) < sR (t) if R′ > R.

According to Eq. (17), γ(t− t0) =
∫ s(t0)
sR(t)

ds
RsIR(s) and γ(t− t0) =

∫ s(t0)
sR′ (t)

ds
R′sIR′ (s)

∀s < s(t0), IR′(s) > IR(s), thus ∀s < s(t0), R′IR′(s) > RIR(s),

∀s < s(t0), 1
R′IR′ (s)

< 1
RIR(s) with

∫ s(t0)
sR(t)

ds
RsIR(s) =

∫ s(t0)
sR′ (t)

ds
R′sIR′ (s)

thus the interval [sR′ (t) , s(t0)] must be larger than [sR (t) , s(t0)], i.e. sR′ (t) < sR (t).

This gives Lemma 2 (iii). �

A.3 Proof of Proposition 1

VT is a continuous real function on the compact interval [0;R0], thus it has a global

maximum on this interval, attained at Ropt.

VT (R) = (T − t0)y(R)− λNδ(1− sR(T )) and V ′T (R) = (T − t0)y′(R) + λNδ ∂sR(T )
∂R

(where y′ > 0 and ∂sR(T )
∂R < 0 according to Lemma 2 (iii)).

We can distinguish 3 cases:

- First corner solution: Ropt = 0 which implies V ′T (0) ≤ 0. But V ′T (0) ≤ 0 is not

possible since we have assumed that y′(0) = +∞. Thus V ′T (0) > 0 and Ropt > 0 in the

sequel.

- Second corner solution: Ropt = R0 which implies V ′T (R0) ≥ 0, which means

(T − t0)y′(R0) ≥ −λδN
(
∂sR(T )
∂R

)
R=R0

, i.e. λ ≤ λ̂0, setting λ̂0 = (T−t0)y′(R0)

−δN
(
∂sR(T )
∂R

)
R=R0

≥ 0.

- Interior solution: 0 < Ropt < R0. Here Ropt satisfies V ′T (Ropt) = 0.

Since corner solution implies λ ≤ λ̂0, then λ > λ̂0 implies interior solution.

In the interior solution case, applying the implicit function theorem at the curve

V ′T (Ropt) = 0 in the plane (λ,Ropt) :
dRopt
dλ

= −
∂V ′
T

∂λ
∂V ′
T

∂R

= − δN
∂sR(T )
∂R

VT ”(Ropt) ≤ 0 since VT ”(Ropt) ≤ 0 (as VT attains its maximum at

Ropt) and ∂sR(T )
∂R < 0.
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We have found that λ 7→ Ropt(λ) is a non increasing function for Ropt(λ) < R0,

with Ropt(0) = R0 and Ropt(λ) < R0 for λ > λ̂0, thus there exists λ0 ∈ [0; λ̂0] such that

Ropt(λ) = R0 ⇔ λ ∈ [0;λ0].

This gives Prop 1 (i) and (ii), except limλ→+∞Ropt = 0 proven below.

Now let us prove that limλ→+∞Ropt = 0.

According to Eq. (17), γ(T − t0) =
∫ s(t0)
sR(T )

ds
RsIR(s) =

∫ s(t0)
sR′ (T )

ds
R′sIR′ (s)

.

If R < R′, sR′ (T ) < sR (T ) and IR′(s) ≥ IR(s) for all s < s(t0).∫ sR(T )
sR′ (T )

ds
R′sIR(s) +

∫ s(t0)
sR(T )

ds
R′sIR(s) =

∫ s(t0)
sR′ (T )

ds
R′sIR(s) ≥

∫ s(t0)
sR′ (T )

ds
R′sIR′ (s)

= γ(T − t0)

thus∫ sR(T )
sR′ (T )

ds
R′sIR(s) ≥ γ(T − t0)−

∫ s(t0)
sR(T )

ds
R′sIR(s) = γ(T − t0)− R

R′
∫ s(t0)
sR(T )

ds
RsIR(s)

= γ(T − t0)− R
R′γ(T − t0)

i.e.
1
R′
∫ sR(T )
sR′ (T )

ds
sIR(s) ≥ γ(T − t0)

[
1− R

R′
]

∫ sR(T )
sR′ (T )

ds
sIR(s) ≥ γ(T − t0)(R′ −R)

1
(R′−R)

∫ sR(T )
sR′ (T )

ds
sIR(s) ≥ γ(T − t0)

with R′ → R, we have

limR′→R+
1

(R′−R)
∫ sR(T )
sR′ (T )

ds
sIR(s) = 1

sR(T )IR(sR(T )) × limR′→R+
sR(T )−sR′ (T )

(R′−R)

= 1
sR(T )iR(T ) ×

−∂sR(T )
∂R

thus
−∂sR (T )

∂R
≥ γ(T − t0)sR (T ) iR (T ) . (27)

Now we go back to the proof of limλ→+∞Ropt = 0.

In the case of an interior solution V ′T (Ropt) = 0, i.e.

(T − t0)y′(Ropt) + λNδ ∂sR(T )
∂R = 0

(T − t0)y′(Ropt) = −λNδ ∂sR(T )
∂R ≥ λNδγ(T − t0)sR (T ) iR (T ) according to (27).

y′(Ropt) ≥ λNδγsR (T ) iR (T )

Since T < +∞, and R 7→ sR (T ) iR (T ) is a positive and continous function on the

compact set [0;R0], then there exists η > 0 such that:

sR (T ) iR (T ) ≥ η > 0 for all R (T given).

y′(Ropt) ≥ λNδγη
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When λ→ +∞, then y′(Ropt)→ +∞, i.e. Ropt → 0. �

A.4 Proof of Proposition 2

(i) According to (22), for t ≥ T , we have

i(t) = i(T ) + s(T )− s(t) + 1
R0

ln(s(t))− 1
R0

ln(s(T ))

thus i′(t) = −s′(t) + s′(t)
R0s(t) = −s′(t)

[
1− 1

R0s(t)

]
, and since s′(t) < 0, thus i′(t) is of the

sign of 1− 1
R0s(t) .

There is a rebound after T if and only if i′(T ) > 0, i.e. if 1 > 1
R0s(T ) , which means that

there is a rebound after T if and only if s(T ) > 1
R0

.

If there is a rebound, i(t) is maximal on t ≥ T when i′(t) = 0, i.e. for s(t) = 1
R0

.

If there is no rebound, i(t) is a decreasing function on t ≥ T , thus i(t) is maximal on

t ≥ T when t = T .

(ii) There is a rebound after T ⇐⇒ s(T ) > 1
R0

.

We must study under which conditions on R and T do we have s(T ) > 1
R0

.

s(T ) is a decreasing function of T ; we set s̃∞ = limT→+∞ s(T ), and s̃∞ is the value of

s(t) such that i(t) = 0 in (16).

Thus i (t0) + s (t0)− s̃∞ + 1
R ln (s̃∞)− 1

R ln(s(t0)) = 0 and

R = ln(s(t0))−ln(s̃∞)
i(t0)+s(t0)−s̃∞

.

We claim that s̃∞ is a decreasing function of R.

Indeed, dR
ds̃∞

=
− 1
s̃∞

(i(t0)+s(t0)−s̃∞)+(ln(s(t0))−ln(s̃∞))
(i(t0)+s(t0)−s̃∞)2 =

(
R− 1

s̃∞

)
(i(t0)+s(t0)−s̃∞)

(i(t0)+s(t0)−s̃∞)2 < 0, since

s̃∞ ≤ s(T ) < 1
R .

- We have: s (T ) > 1
R0

for all T ⇐⇒ s̃∞ ≥ 1
R0

,

i.e.

s(T ) > 1
R0

for all T ⇐⇒ R ≤ R̃t0 , setting R̃t0 =
ln(s(t0))−ln

(
1
R0

)
i(t0)+s(t0)− 1

R0
.

This proves the first point of Proposition 2(ii).

- If s̃∞ < 1
R0

, i.e. if R > R̃t0 , then since s(T ) is a decreasing function of T , there exists

a value Tmin such that s(T ) ≤ 1
R0

(i.e. no rebound) for T ≥ Tmin, and s(T ) > 1
R0

(i.e.

rebound) for T < Tmin.
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A.5 Proof of Proposition 3

(i) s∞ is the value of s(t) such that i(t) = 0 in (22).

Thus i(T ) + s(T )− s∞ + 1
R0

ln(s∞)− 1
R0

ln(s(T )) = 0

which gives R0 = ln(s(T ))−ln(s∞)
i(T )+s(T )−s∞ .

At the end of the pandemic we have of course i = i∞ = 0, thus r = r∞ = 1− s∞.

- Let us show that s∞ = s∞(R, T ) < 1
R0

.

If s(T ) ≤ 1
R0

, then s∞(R) < s(T ) ≤ 1
R0

.

If s(T ) > 1
R0

, there is a rebound after T with an epidemic peak when s(t) = 1
R0

,

thus s∞(R) < s(t) = 1
R0

.

In both cases we have s∞(R) < 1
R0

.

- Let us show that s∞(R, T ) is an increasing function of T (for a given R0).

AsR0 = ln(s(T ))−ln(s∞)
i(T )+s(T )−s∞ = ln(s(T ))−ln(s∞)

1−r(T )−s∞ , we get: R0 (1− r(T )− s∞) = ln(s(T ))−ln(s∞).

Derivating with respect to T :

R0 (−ṙ(T )− ṡ∞) = ṡ(T )
s(T ) −

ṡ∞
s∞

.

As ṙ(T ) = dr
dt

(T ) = γi(T ) and ṡ(T ) = ds
dt

(T ) = −βi(T )s(T ), we get:

−R0 (γi(T ) + ṡ∞) = −βi(T )− ṡ∞
s∞

.

Thus ṡ∞
(

1
s∞
−R0

)
= (β0 − β)i(T ), we write

ṡ∞ = (β0−β)i(T )
1
s∞
−R0

> 0 which is positive since the numerator and the denominator are

both positive.

- Let us show that s∞(R) is a decreasing function of R0 (for a given T ).

From (24) we get dR0
ds∞

= − 1
s∞

(i(T )+s(T )−s∞)+ln(s(T ))−ln(s∞)
(i(T )+s(T )−s∞)2 = (R0− 1

s∞ )(i(T )+s(T )−s∞)
(i(T )+s(T )−s∞)2 < 0

since s∞ < 1
R0

. This proves Prop 3(i).

(ii) The representative curve of the function s 7→ IR0(s) is above the one representing

s 7→ IR(s) from Lemma 2(iii), thus s∞(R) ≥ s∞(R0).

- Let us show that s∞(R) is a non-monotonic function of R if T is high.

R0 = ln(s(T ))−ln(s∞)
i(T )+s(T )−s∞ , thus R0 (i(T ) + s(T )− s∞) = ln(s(T ))− ln(s∞)

i.e., i(T ) + s(T )− s∞ = 1
R0

ln(s(T ))− 1
R0

ln(s∞)

−s∞ + 1
R0

ln(s∞) = −i(T )− s(T ) + 1
R0

ln(s(T ))

and since i(T ) + s(T ) = 1− r(T ) :

1− s∞ + 1
R0

ln(s∞) = r(T ) + 1
R0

ln(s(T )).
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If T is sufficiently high, then s(T ) ' s̃∞ (since s̃∞ = limT→∞ s(T )), and r(T ) ' 1− s̃∞.

This leads to:

1− s∞ + 1
R0

ln(s∞) ' 1− s̃∞ + 1
R0

ln(s̃∞)

i.e.

hR0(s∞) ' hR0(s̃∞)

where hR0 is defined by hR0(s) = 1− s+ 1
R0

ln(s).

According to the proof of Prop 2 (ii), s̃∞ is a decreasing function of R on R ∈ (0;R0],

with s̃∞ ≥ 1
R0

if R ≤ R̃t0 , and s̃∞ ≤ 1
R0

if R ≥ R̃t0 .

For a given s∞, s∞ < 1
R0

, the equation hR0(s∞) = hR0(s̃∞) of unknown s̃∞ has two

different roots: the first one is higher than 1
R0

, the second one is lower than 1
R0

.

For R ∈ [R̃t0 ,R0], we have s∞ = s̃∞ ≤ 1
R0

and s∞ is a decreasing function of R.

For R ∈ (0, R̃t0), we have s∞ < 1
R0

< s̃∞ and s∞ is here an increasing function of R.

Summing up, for T high enough, s∞ is a non-monotonic function of R, it is first

increasing, then decreasing.

A.6 Proof of Proposition 4

(i) L∞(R) = (T − t0) [y(R0)− y(R)] + λM∞(R).

L∞ is a continuous function on the compact interval [0;R0], thus it has a global

minimum on this interval, attained at Ropt
∞ .

L′∞(R) = −(T − t0)y′(R)− λNδs′∞(R) with y′ > 0.

We can distinguish 3 cases:

- First corner solution:

Ropt
∞ = 0 which implies L′∞(0) ≥ 0. But L′∞(0) ≥ 0 is not possible since y′(0) = +∞

by assumption. Thus L′∞(0) < 0 and Ropt
∞ > 0 in the sequel.

- Second corner solution:

Ropt
∞ = R0 which implies L′∞(R0) ≤ 0 which means −λδNs′∞(R0) ≤ (T − t0)y′(R0),

i.e. λ ≤ λ̂′0, setting λ̂′0 = (T−t0)y′(R0)
−δNs′∞(R0) ≥ 0.

- Interior solution: 0 < Ropt
∞ < R0. Here Ropt

∞ satisfies L′∞(Ropt
∞ ) = 0.

L′∞(Ropt
∞ ) = 0 then λNδs′∞(Ropt

∞ ) = −(T − t0)y′(Ropt
∞ ) < 0.

41



Since corner solution implies λ ≤ λ̂′0, then λ > λ̂′0 implies interior solution.

In the interior solution case, applying the implicit function theorem at the curve

L′∞(Ropt
∞ ) = 0 in the plane (λ,Ropt

∞ ) :
dRopt∞
dλ

= −
∂L′∞
∂λ

∂L′∞
∂R (Ropt∞ )

= δNs′∞(Ropt∞ )
L∞”(Ropt∞ ) ≤ 0 since L∞”(Ropt

∞ ) ≥ 0 (because there is a mini-

mum at Ropt
∞ ), and s′∞(Ropt

∞ ) < 0 by the F.O.C.

We have found that λ 7→ Ropt
∞ (λ) is a non increasing function for Ropt

∞ (λ) < R0, with

Ropt
∞ (0) = R0 and Ropt

∞ (λ) < R0 for λ > λ̂′0, thus there exists λ′0 ∈ [0; λ̂′0] such that

Ropt
∞ (λ) = R0 ⇔ λ ∈ [0;λ′0].

This gives Prop 4 (i).

(ii) For λ given, λ > λ′0, the interior solution leads to s′∞(Ropt
∞ ) = −(T−t0)y′(Ropt∞ )

λNδ
< 0.

According to Proposition 3(ii), for T high enough s′∞(R) < 0 only on R > R̃t0 , thus

Ropt
∞ > R̃t0 . �

A.7 Proof of Proposition 5

(i) Let us denote by (Cε) the curve in the plane (s, i) representing the end of lockdowns

(sR(T ), iR(T )) which lead after release of lockdown to s∞ = s∞(R, T ) = 1
R0
− ε.

According to Eq. (22) with t→ +∞, and i = i(T ), s = s(T ), since limt→∞ i(t) = 0

and limt→∞ s(t) = s∞, the equation of (Cε) in the plane (s, i) is 0 = i + s − s∞ +
1
R0

ln(s∞)− 1
R0

ln(s),

i.e.

i = s∞ − 1
R0

ln(s∞)− s+ 1
R0

ln(s)

Under the assumption s∞ = 1
R0
− ε, with ε > 0 given, (Cε) meets the x-axis at two

points: s = s∞ and s = š∞, with s∞ < 1
R0

< š∞,

thus −s∞ + 1
R0

ln(s∞) = −š∞ + 1
R0

ln(š∞), i.e. hR0(s∞) = hR0(š∞).

Let R1 and R2 be defined by limT→∞ sR1(T ) = š∞ and limT→∞ sR2(T ) = s∞.

Then for R ≤ R1 or R ≥ R2, we have s∞(R) < 1
R0
− ε, i.e. s∞(R) = 1

R0
− ε is

impossible.

If R ∈ (R1,R2), there exists a value of T (denoted by Tε(R)), such that s∞(R) =

s∞(R, T ) = 1
R0
−ε, and limR→R1 Tε(R) = limR→R2 Tε(R) = +∞, since limT→∞ sR1(T ) =
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š∞ and limT→∞ sR2(T ) = s∞.

(ii) For a given mortality M∞(R, T ) = δNs∞(R, T ) = δN
(

1
R0
− ε

)
, the economic cost

of the lockdown is Cε(R) = (Tε(R)− t0) (y(R0)− y(R)).

R 7→ Cε(R) is a continuous function on (R1,R2), with limR→R1 Cε(R) = limR→R2 Cε(R) =

+∞.

R 7→ Cε(R) is continuous on any closed (compact) interval included in (R1,R2),

thus there exists a minimum in (R1,R2).

The first order equation is C ′ε(R) = 0, with C ′ε(R) = T ′ε(R) (y(R0)− y(R))−(Tε(R)− t0) y′(R)

The minimal time is obtained with R = R◦ε satisfying T ′ε(R) = 0.

The minimal economic cost is obtained with R = R̂ε satisfying C ′ε(R) = 0.

Since T ′ε(R) = 0 and C ′ε(R) = 0 cannot be simultaneously obtained, thus R◦ε 6= R̂ε.

If R◦ε > R̂ε, then R◦ε is not only the fastest, but also the less costly. It is impossible

since the less costly is R̂ε. Thus R◦ε < R̂ε.

We have T̂ε > T
◦
ε by definition. �

A.8 Proof of Proposition 6

L∞ (R, T ) = (T − t0) (y (R0)− y (R))+λM∞ (R) is a continuous function on (R, T ) ∈

[0;R0]× [t0; +∞).

Let a = inf0≤R≤R0
T≥t0

L∞ (R, T ). Is this infimum a minimum?

We can write a = inf0≤ε≤ 1
R0

inf{
(R,T ) with s∞= 1

R0
−ε
} L∞ (R, T )

 = inf0≤ε≤ 1
R0
a(ε),

where a(ε) = inf(R,T ) with s∞= 1
R0
−ε L∞ (R, T ) has been studied in Proposition 5.

a(0) = L∞
(
R̃t0 ,+∞

)
= +∞, thus a = inf0<ε≤ 1

R0
a(ε) and for ε very close to 0,

a(ε) is arbitrarily high, thus if ε0 > 0 is sufficiently small, we have a = infε0≤ε≤ 1
R0
a(ε).

The function ε 7→ a(ε) is continuous on the compact interval [ε0,
1
R0

], thus the

infimum is a minimum according to the extreme value theorem, i.e. there exists a

couple (R∗, T ∗) ∈ [0;R0]× [t0; +∞) such that a = L∞ (R∗, T ∗). �
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