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Abstract

We revisit the problem of optimal insurance contract design under risk and
ambiguity in an optimal control framework where the indemnity function and the
premium are to be solved for simultaneously. Our approach generalizes the anal-
yses carried out so far in the context of the smooth ambiguity model. We prove
the existence of an optimal insurance policy under the standard assumption of a
risk-averse policyholder and a risk-neutral insurer, both of whom can be averse
or neutral to ambiguity. We characterize not only the risk-sharing but also the
ambiguity-sharing rule between an insurer and a policyholder. Under one-sided risk
and ambiguity aversion, we show that a straight deductible policy cannot be optimal
when ambiguity leads to the incompleteness of the insurance contract.
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1 Introduction

We know from the seminal work of Arrow (1974) that a straight deductible is optimal
for a risk-averse policyholder facing a risk-neutral insurer and linear cost of indemnity
provision. Since this pioneering work, the efficiency of deductible contracts has become
one of the basics of Insurance Economics and has proved to be particularly robust to
economic contexts and generalizations.

Raviv (1979) made the first attempt to generalize the work of Borch (1960) and Arrow
(1965; 1974) to demonstrate that the existence of co-insurance contracts is due to either
the nonlinear cost of indemnity provision, or risk-aversion on the part of the insurer.
Huberman et al. (1983) shows that a disappearing deductible is optimal in the presence
of concave transaction costs.

Subsequently, some contributions focused on the generalization of these results beyond
the Expected Utility (EU) model (Zilcha and Chew (1990), Karni (1992), Machina (1995),
Chateauneuf et al. (2000)). For example, Gollier and Schlesinger (1996) showed that the
optimality of deductibles is not exclusively reserved for the EU model since it springs
from first- and second-degree stochastic dominance. In the presence of fixed cost, an
issue initially raised by Gollier (1987), Carlier and Dana (2003) prove the existence of an
optimal insurance contract relying on a stochastic dominance hypothesis.

Recently, Bernard et al. (2015) question the relevance of a straight deductible contract
for a decision maker whose preferences are described by the Rank Dependent Expected
Utility (RDEU) model. In contrast with the mainstream results they showed that the
optimal contract insures not only large losses above a deductible but also small ones.
Similar results are obtained by Xu (2018), Xu et al. (2019) and Ghossoub (2019b). As
the RDEU model results in a better fit to real human behavior than the EU model, these
authors challenge Arrow’s result.

In this paper, we continue to investigate the robustness of the efficiency of deductible
insurance contracts under ambiguity. For this purpose, we characterize the efficient design
of an insurance contract under ambiguity and provide a comprehensive treatment of the
relationship between the insurer and the policyholder, in a principal-agent framework,
both under risk and ambiguity.

The concept of ambiguity motivated by the Ellsberg’s paradox (Ellsberg, 1961) has
led to the development of several competing ambiguity models (See Gilboa and Marinacci
(2016), Machina and Siniscalchi (2014) or Etner et al. (2012)). This concept contributes
to the understanding of a growing number of economic topics and puzzles, such as the
stock market participation puzzle (Dow and Werlang (1992), Bossaerts et al. (2010),
Collard et al. (2018)), portfolio choice and ambiguity aversion (Gollier (2011)), the low
take-up of freely available genetic tests (Hoy et al. (2014)), the decision to trust (Corcos
et al. (2012), Li et al. (2019)), the value of statistical life (Treich (2010), Bleichrodt et al.
(2019), Berger et al. (2013)).

In the case of insurance behavior, ambiguity makes sense since many risks are either
objectively poorly defined (e.g. environmental risks) or subjectively poorly perceived
by the insured (e.g. health risk). Several competing approaches have been adopted to
model this phenomenon. Among them there are contributions that follow the Choquet
Expected Utility (CEU) approach proposed by (Schmeidler, 1989), including Carlier et al.
(2003), Amarante et al. (2015); Amarante and Ghossoub (2016), Ghossoub (2019a). In
the context of CEU, Ghossoub and colleagues consider only fixed-premium contracts.
These authors also allow for the possibility of an ambiguity-seeking insurer. The more
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recent smooth ambiguity approach of Klibanoff et al. (2005) is also adopted to address
the question of optimal demand for prevention and insurance when risks are ambigu-
ous. Two recent contributions in this line of research include Alary et al. (2013) and
Gollier (2014). While Alary et al. (2013) emphasize the role of ambiguity aversion on
the demands for insurance, self-insurance and self-protection, Gollier (2014) characterizes
optimal insurance contracting under linear transaction costs.

In this study, we also follow the smooth model of ambiguity of Klibanoff et al. (2005)
owing to its ability to separate ambiguity and attitudes towards ambiguity. Moreover, the
smooth ambiguity model has received significant support from a number of experimental
studies, such as Halevy (2007), Chakravarty and Roy (2009), Conte and Hey (2013), Ahn
et al. (2014), Baillon and Bleichrodt (2015), Cubitt et al. (2019), Cubitt et al. (2018).

In the context of smooth ambiguity, we implement a comprehensive approach of the
problem of optimal insurance contracting under symmetric information and convex cost.
This framework allows us to extend and revisit the analysis of optimal insurance design
under risk and ambiguity. We find ambiguity might be a source of contract incompleteness
which challenges the efficiency of straight deductibles.

First, we explore the idea that both parties could be ambiguous averse. If risk aver-
sion on insurer’s side has already been studied in Raviv (1979), we found relevant to
assume ambiguity aversion not only on the policyholder’s side but also on insurer’s side.
In the context of environmental and catastrophic risks, several studies documented the
fact that insurers are ambiguity averse (See Kunreuther and Hogarth (1992), Kunreuther
et al. (1993), Kunreuther et al. (1995), Cabantous (2007), Cabantous et al. (2011)).
Moreover, the substantial growth of insurance-linked securities (Cat bonds), which pro-
vide capital market-based insurance against the risk of natural catastrophes, in addition
to standard reinsurance mechanisms, also argues for the benefit of the general assumption
of ambiguity aversion.

Second, to our knowledge, following the seminal contribution of Arrow (1974), most
papers tackle the optimal insurance problem in a two-step approach. First, they solve for
the form of an optimal indemnity function for a fixed premium, and then search for the
Pareto efficient contracts by determining the premium. In generalizing Arrow’s results,
Raviv (1979) also follows this approach, and has found, after the first step, two solution
candidates: one policy with a deductible and the other with an upper limit coverage. The
ultimate form of the indemnity schedule depends on the fixed premium. Nevertheless,
this premium is defined in an implicit manner in the second step of Raviv’s proof, making
it impossible to be analyzed in practice. To resolve this issue, we propose an alternative
approach whereby the optimization is done with respect to the pair of the premium and
the indemnity function simultaneously.

The rest of the paper is organized as follows. Section 2 introduces the optimal in-
surance problem under risk and ambiguity and key assumptions. Section 3 provides an
existence proof and employs the Pontryagin Maximum Principle to study the general fea-
tures of an optimal contract under ambiguity. Section 4 examines two special important
cases in details: the case where both contracting parties are ambiguity-neutral and the
case of two ambiguous states. Section 5 concludes and suggests a roadmap for future
research. All proofs can be found in the appendices.
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2 The optimal insurance problem

In this paper, we are interested in the problem where a potential policyholder considers
an optimal insurance policy (I(·), π) where π is the premium the policyholder pays to
the insurer to obtain an indemnity schedule I(·). Let the subscripts A and P denote,
respectively, the policyholder and the insurer. The problem of the policyholder can be
formulated as:

max
(I(·),π)

n∑
i=1

piφA

(∫
Ix

u(WA − π − x+ I(x))fi(x)dx

)
(1a)

s.t. I(x) ∈ [0, x], ∀x ∈ Ix, (1b)
π ∈ Iπ = [π, π] ⊆ Ix, (1c)
n∑
i=1

piφP

(∫
Ix

v(WP + π − I(x)− ψ(I(x))fi(x)dx

)
≥ V̄ , (1d)

where WA and WP stand for the initial wealth of the policyholder and the insurer, re-
spectively. The last inequality is often called the participation constraint (of the insurer).
In the program above, x stands for the loss faced by the policyholder, which is a con-
tinuous random variable. Ambiguity enters through the unknown second-order state i
taking values in a finite second-order state space I. Notice that the density of the loss
is i-conditional. The DMs have perfect knowledge of I and each conditional distribution
fi(·) of the loss, but faces ambiguity on the distribution of the second-order states. The
set {pi}i∈I is the set of priors the DMs have on the distribution of the second-order states.
We assume that the priors are symmetric, in the sense that both DMs have the same
information on the distribution of the second-order states, and thus the same conditional
loss densities. We can view this assumption as the equilibrium outcome of some informa-
tion market, an issue that is interesting but is beyond the scope of this paper. Both DMs
exhibit attitudes towards risk and towards ambiguity. In particular, the attitude towards
risk of the policyholder and the insurer is captured by the convexity of the utility function
u(·) and v(·), respectively. Typically, the policyholder is risk-averse, implying that u is
strictly concave, and the insurer is risk-neutral, implying that v is linear . Without loss
of generality (WLOG), we can let v be the identity function. The policyholder’s attitude
towards ambiguity, according to Klibanoff et al. (2005), is described by the convexity
of the functional φA. This functional being concave, linear, or convex corresponds to
an ambiguity-averse, ambiguity-neutral, or ambiguity-loving policyholder. Typically, the
policyholder is ambiguity-averse. Likewise, the insurer’s attitude towards ambiguity is
captured by the convexity of the functional φP . Let us now state these assumptions more
concretely.

Assumption 1 (Finite second-order state space). The second-order state space I is
finite. In particular I = {1, 2, . . . , n}, for some positive integer n.

Assumption 2 (Common priors). Let pi denotes the common prior probability of state
i ∈ I for each DM. Assume pi ∈ (0, 1) for all i ∈ I and

∑n
i=1 pi = 1.

Assumption 3 (Common bounded support). The loss x̃ is a continuous random variable
whose state-conditional densities have a bounded common support Ix = [0, x̄], where x̄ > 0.
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Assumption 4 (Strictly positive conditional densities). The state-conditional cumulative
density functions (cdfs) Fi : Ix → [0, 1], for each i in I. The cdfs are C2 on the common
domain Ix. Let fi : Ix → (0,∞) stand for the state-i probability density function (pdf) of
x̃ defined by fi(x) = ∂Fi(x)

∂x
, for x ∈ Ix. Denote f = (fi)i∈I the n-dimensional vector of

conditional densities.

Assumption 5 (Ordering of conditional distributions). Assume that there exists an or-
dering criterion of the ambiguous states. In particular, we establish that state i is better
than state j whenever i < j ∈ I in the sense that Fj dominates Fi in the sense of like-
lihood ratio dominance (LRD). In particular, let `ij : Ix → R∗+ be the LR defined by
`ij(x) = fi(x)

fj(x)
, for x ∈ Ix. Let i, j ∈ I. Then i < j implies `′ij(x) ≤ 0 for all x ∈ Ix,

with strict inequality in some subset of positive measure of Ix. In other words, the cdf Fj
dominates the cdf Fi in the sense of LRD whenever i < j.1

Assumption 6 (Bounded indemnity). The measurable indemnity function I : Ix → Ix
satisfies I(x) ∈ [0, x] for all x ∈ Ix.

Assumption 7 (Convex cost). The cost of indemnity provision ψ(·) is a C2 function
ψ : Ix → R+ satisfying ψ(0) = 0, ψ′

> 0, ψ′′ ≥ 0, and ψ(I) ≤ I for all I ≥ 0.

As mentioned earlier, the policyholder is risk-averse, namely that her preference can
be modeled with a strictly increasing and concave utility function as follows. By contrast,
the insurer is risk-neutral.

Assumption 8 (Risk aversion of the policyholder). The utility function of the policy-
holder u : R∗+ → R is at least C2, strictly increasing and strictly concave: u′ > 0, and
u

′′
< 0.

To ensure that u is always well-defined, let us assume that the initial wealth WA of
the policyholder satisfies:

WA ≥ π + x̄, (2)

where π is the upperbound for the premium. Let ru : R∗+ → R∗+ denote the familiar
Arrow-Pratt measure of absolute risk aversion, defined by:

ru(w) = −u
′′(w)

u′(w)
. (3)

Assumption 9 (Risk neutrality of the insurer). The insurer has identity utility function,
namely that v : R∗+ → R is the map x 7→ x for all x ∈ R∗+.

In light of Assumption 9, the participation constraint of the insurer can be rewritten
as:

n∑
i=1

piφP

(∫
Ix

(WP + π − I(x)− ψ(I(x))fi(x)dx

)
≥ V̄ . (4)

The phenomenon known as “ambiguity aversion” revived by Ellsberg (1961) is modeled in
the smooth sense of Klibanoff et al. (2005) via a strictly monotone concave second-order
utility functional.

1Recall that LRD is a special case of first-order stochastic dominance (FSD). Thus Fj dominates Fi

in the LRD sense implies Fj(x) ≤ Fi(x) for all x ∈ Ix, with strict inequality on some subset of Ix of
positive measure. See, for example, Wolfstetter (1999) for a discussion.
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Assumption 10 (Ambiguity aversion). Let the second-order utility functional be φJ :
R→ R, where J ∈ {A,P}. Then φJ is at least C2, strictly increasing and concave on its
domain. Assume that the φJ ’s have bounded first-order derivatives, so that 0 < φ

′
J < +∞,

φ
′′
J ≤ 0, for each J ∈ {A,P}. Whenever φJ is linear, we assume without loss of generality

that φJ is the identity function.

This assumption means that the DMs are either ambiguity-neutral (φJ is the identity
function), or is (strictly) ambiguity-averse (φJ is strictly concave).

Finally, let us make the following assumption regarding the initial wealth levels of the
DMs.

Assumption 11 (Other parameters). We assume that V̄ is equal to the reservation
second-order utility of the insurer (i.e., the utility obtained without participating in the
contract), namely that:

V̄ = φP (WP ). (5)

Furthermore, we assume that the bounds for the premium satisfy:

π = 0, (6)

π =

∫
Ix

(x+ ψ(x)) f̄(x)dx, (7)

(8)

where f̄ : Ix → R∗+ is the ambiguity-neutral density defined by

f̄(x) =
n∑
i=1

pifi(x), x ∈ Ix. (9)

Equation (7) says that the premium cannot exceed the expected total cost of providing
uniformly full insurance with respect to the ambiguity-neutral density.

3 Existence and general characterization of an optimal
insurance contract under ambiguity

In this section, we employ techniques from optimal control theory to first prove that under
standard conditions, an optimal insurance contract exists. We next use the Pontryagin
Maximum Principle (PMP) to derive a set of necessary conditions that must be satisfied
by such contracts.

3.1 Existence

We first reformulate the policyholder’s problem as an optimal control problem (OCP).
To this end let the control be the function J : Ix → [0, 1] defined by:

xJ(x) = I(x), x ∈ Ix. (10)

Observe that J is simply the insurance coverage rate. Since I(x) ∈ [0, x] for all x ∈ Ix,
the admissible control set U is:

U = {J : Ix → [0, 1], J measurable}. (11)
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Note that U is compact with respect to the weak-? topology. To describe the "dynamic"
of the system, let X ≡ (y, z, π) be the state vector defined on the state space X =
Rn

+ × Rn
+ × Iπ satisfying:

Ẋ(x) =

 ẏ(x)
ż(x)
π̇(x)

 =

 u(WA − π − x+ xJ(x))f(x)
(WP + π − xJ(x)− ψ(xJ(x))) f(x)

0

 ,

X(0) =

 y(0) = 0
z(0) = 0
π(0) = π

 ,

(12)

where f(x) = (fi(x))i∈I is the n-dimensional vector of conditional densities defined in
Assumption 4.

Let the cost functional faced by the policyholder be

g(J, π) = −
n∑
i=1

piφA (yi(x̄)) , (13)

which is just minus her objective function. Define the risk-neutral insurer’s net welfare
functional:

h(J, π) =
n∑
i=1

piφP (zi(x̄))− V̄. (14)

The policyholder’s problem can be rewritten more compactly as the following optimal
control problem (OCP):

min
{J,π}

g(J, π)

s.t.

h(J, π) ≥ 0.

(OCP)

LetM0 andM1 be measurable subsets of X defined as

M0 = {0} × {0} × Iπ, (15)
M1 = Rn × Sz,π, (16)

where Sz,π = {z ∈ Rn × Iπ | h(J, π) ≥ 0} is the admissible set. The setsM0 andM1 are
often called the source and target sets of the control system (12). The OCP admits an
optimal pair (J, π). In other words, there exits an optimal insurance contract (I, π) such
that I(x) = xJ(x) for x ∈ Ix.

Proof. See Subsection 6.1. �

Lemma 1. The insurer’s participation constraint is saturated at an optimum, that is if
(J, π) is optimal, then h(J, π) = 0.

Proof. See Subsection 6.2. �

Before proceeding, let us consider two corner cases of the problem: the case of uni-
formly zero insurance J = 0, and the case of uniformly full insurance J = 1.

First, consider the case of uniformly zero insurance J(x) = 0 for all x ∈ Ix. In this
case,

h(0, π) = φP (WP + π)− V̄ = φP (WP + π)− φP (WP ), (17)
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where the second equality comes from (5). Furthermore by (6) and (5),

h(0, π) = 0. (18)

Observe that h is strictly monotone in π and π ≥ π for all π ∈ Iπ. Hence the pair (0, π)
is admissible for all π ∈ Iπ. Nevertheless by Lemma 1, only the pair (0, π) is a candidate
for an optimum.

Next, consider the case of uniformly full insurance, namely the case J(x) = 1 for all
x ∈ Ix. We have:

h(1, π) =
n∑
i=1

piφP

(
WP + π −

∫
Ix

(x+ ψ(x))fi(x)dx)

)
. (19)

Note that since h is strictly increasing in π,

h(1, π) ≤ h(1, π), ∀π ∈ Iπ. (20)

Let us consider two subscases.

• If φP is strictly concave (the insurer is ambiguity-averse), then by Jensen inequality
and condition (7),

h(1, π) < φP (WP )− V̄ = 0. (21)

Then (20) and (21) imply

h(1, π) < 0, ∀π ∈ Iπ, (22)

implying that there is no admissible pair.

• If φP is identity (the insurer is ambiguity-neutral), then also by condition (7) we
have

h(1, π) = 0, (23)

implying that h(1, π) ≤ 0 for all π ∈ Iπ. Hence the only admissible pair is (J =
1, π = π).

To sum up, a contract involving uniformly zero insurance is always admissible, but can be
an optimum if and only if the associated premium is zero. By contrast a contract involving
uniformly full insurance is admissible if and only if the insurer is ambiguity-neutral.

3.2 General shape of an optimal contract

Let us now use the PMP to derive the necessary conditions and investigate some general
features of an optimal insurance contract. The statement of the PMP applied to the OCP
is provided in the following theorem.2

Theorem 1. Suppose (X, J) is an optimal pair for the OCP. There exists an absolutely
continuous vector-valued function λ : Ix → R2n+1 and a real number λ0 ≥ 0 with (λ, λ0) 6=
0 ∈ R2n+2 such that:

2This version of the PMP is adapted from Trélat (2008).
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1. λ satisfies the canonical equations:

Ẋ(x) = ∇λH(X(x), J(x), λ(x), λ0, x), (24)
λ̇(x) = −∇XH(X(x), J(x), λ(x), λ0, x), (25)

for almost every x ∈ Ix, where the real-valued function H : R2n+1 × R × R2n+1 ×
R× R→ R, called the Hamiltonian, is defined by:

H(X,ω, λ, λ0, x) = u(WA − π − x+ xω) 〈λy, f(x)〉
+ (WP + π − xω − ψ(xω)) 〈λz, f(x)〉 ,

(26)

where λ ≡ (λz, λy, λπ)T ∈ R2n+1 is the adjoint vector whose components λz ∈ Rn,
λy ∈ Rn and λπ ∈ R themselves are the adjoint vectors corresponding to the state
variables z,y and π, respectively.

2. The maximum condition:

H (X(x), J(x), λ(x), λ0, x) = max
ω∈[0,1]

H (X(x), ω, λ(x), λ0, x) (27)

is satisfied for almost every x ∈ Ix.

3. The transversality conditions (TCs) hold:

λ(0) ∈ NM0(X(0)), (28)
−λ0∇Xg(J, π)− λ(x̄) ∈ NM1(X(x̄)), (29)

where NMi
(X(x)) denotes the normal cone toMi at X(x), for i ∈ {0, 1}.

Let µ = (µh, µπ, µπ) ∈ R3
+ be the vector of Lagrange multipliers, where µh is associated

to the constraint h(J, π) ≥ 0, and (µπ, µπ) is associated to the constraint π ∈ Iπ.
The adjoint vectors λy and λz are constant with respect to x. In particular,

λy = λ0 (piφ
′
A(yi(x̄)))i∈I , (30)

λz = µh (piφ
′
P (zi(x̄)))i∈I . (31)

The adjoint vector λπ satisfies

λπ(x̄) =

〈
λy,

∂y(x̄)

∂π

〉
+

〈
λz,

∂z(x̄)

∂π

〉
+ µπ − µπ, (32)

λπ(0) = 2

(〈
λy,

∂y(x̄)

∂π

〉
+

〈
λz,

∂z(x̄)

∂π

〉)
+ µπ − µπ. (33)

Moreover if π ∈ (π, π), then (µπ, µπ) = 0 and

λπ(0) = λπ(x̄) = 0. (34)

Proof. See Subsection 6.3. �

Lemma 2. The non-triviality condition (λ0, µh) 6= 0 holds.
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Proof. See Subsection 6.4. �

Let us now consider the maximum condition. Denote Hω ≡ ∂H
∂ω

, and Hωω ≡ ∂2H
∂ω2 . For

every fixed x ∈ Ix, we have

Hω = x [u′(WA − π − x+ xω) 〈λy, f(x)〉 − (1 + ψ′(xω)) 〈λz, f(x)〉] , (35)
Hωω = x2 [u′′(WA − π − x+ xω) 〈λy, f(x)〉 − ψ′′(xω) 〈λz, f(x)〉] . (36)

Furthermore, denote

K(x) = u′(WA − π − x)G(x)− (1 + ψ
′
(0)), (37)

and
L(x) = u′(WA − π)G(x)− (1 + ψ′(x)). (38)

Notice that the signs of K(x) and L(x) are a.e. identical to the signs of Hω(x)|ω=0 and
Hω(x)|ω=1, respectively.

Lemma 3. At an optimum,

• λ0 = 0 if and only if the optimal contract is the trivial pair (J = 0, π = π);

• µh = 0 if and only if φP is linear, in which case the optimal contract entails full
insurance is the pair (J = 1, π = π).

Proof. See Subsection 6.5.
�

In the remaining analyses of the paper we assume, whenever not explicitly stated, that
both λ0 and µh are strictly positive. Since all the prior probabilities and the densities
are strictly positive (assumptions 2 and 4), we can define:

A(x) =
〈λy, f(x)〉
〈p, f(x)〉

, x ∈ Ix, (39)

P (x) =
〈λz, f(x)〉
〈p, f(x)〉

, x ∈ Ix. (40)

Observe that both A and P are strictly positive since λ0 > 0 and µh > 0. Hence we can
define their ratio G : Ix → R∗+ by

G(x) =
A(x)

P (x)
=
〈λy, f(x)〉
〈λz, f(x)〉

. (41)

Clearly G is strictly positive. To interpret these terms, rewrite A(x) as:

A(x) = λ0

∑n
i=1 piφ

′
A(yi(x̄))fi(x)∑n

i=1 pifi(x)
= λ0

n∑
i=1

pi(x)φ′A(yi(x̄)), (42)

where pi(x) = pif(x)∑n
i=1 pif(x)

is the Bayesian posterior probability on the occurrence of the
second-order state i given that the loss is x. This inference is a direct consequence of the
uncertainty on the distribution of the loss and the fact that the second-order state is not a
contractible parameter. If it were, then it would be possible to specify a contract for each
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of these states, which would essentially bring us back to the unambiguous setting. Here
we have implicitly assumed (as in the rest of the literature) that it is not be feasible to
verify the second-order state ex-post. We shall see later that it is essentially this problem
that leads to the general sub-optimality of straight deductibles under one-sided risk and
ambiguity aversion (i.e. in the case where only the policyholder is averse to risk and
ambiguity but the insurer is neutral to both).

Hence A(x) so defined can be interpreted as the expected marginal second-order util-
ity, or expected marginal welfare (EMW) of the policyholder with respect to the pos-
terior distribution (up to a positive constant). Analogously P (x) can be interpreted as
the EMW of the insurer with respect to the posterior distribution. Finally, G(x), the ex-
pected marginal welfare ratio (EMWR), reflects the relative strength of the policyholder’s
ambiguity aversion to that of the insurer (see equation (47) below).

For each π ∈ Iπ, let Σx : [0, x]→ R∗+ be the function defined by:

Σx(I) =
1 + ψ′(I)

u′(WA − π − x+ I)
. (43)

It is easy to see that by the convexity of ψ and the concavity of u, this function strictly
increasing in I for each x ∈ Ix. Hence for each fixed π, the function Σx is strictly increasing
for all I(x) ∈ [0, x], implying that Σx has a well-defined inverse Σ−1

x : R∗+ → [0, x], which
is also strictly increasing. An optimal coverage rate function J is such that

xJ(x) ∈
{

0, 1 ,Σ−1
x (G(x))

}
, x ∈ Ix. (44)

where Σ−1
x : R∗+ → [0, x] is the inverse map of Σx defined in (43), and G is the ratio

of expected marginal welfare given in (41). Equivalently, the corresponding indemnity
function I(x) = xJ(x) satisfies

I(x) ∈
{

0, x, Σ−1
x (G(x))

}
, ∀x ∈ Ix. (45)

Moreover, for x ∈ (0, x̄] such that J(x) takes an interior value, the indemnity function
takes values in (0, x), is differentiable at x and satisfies differential equation:

I ′(x) =
ru(WA(x)) + G′(x)

G(x)

ru(WA(x)) + ψ′′(I(x))
1+ψ′(I(x))

, (46)

where ru(·) > 0 is the policyholder’s Arrow-Pratt degree of absolute risk aversion and
WA(x) = WA − π − x+ I(x) denotes her final wealth.

Proof. See Subsection 6.6. �

Notice that equation (46) characterizes both risk and ambiguity sharing between the
policyholder and the insurer. The risk-sharing part is explained by the degree of risk
aversion: the higher it is, the higher is the coverage rate. Thus, the behavior of the
coverage rate with respect to risk aversion is robust to the introduction of ambiguity. In
the same way, the presence of ambiguity does not modify the relationship between the
coverage rate and the cost of indemnity provision. The ambiguity sharing component is
marked by the term G′/G in the numerator; the larger is this ratio, the more the burden
of ambiguity bearing is shifted towards the insurer.
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To understand the behavior of G′/G, recall that since G(x) = A(x)
P (x)

. Differentiating
with respect to x and re-arranging yield:

G′(x)

G(x)
=
A′(x)

A(x)
− P ′(x)

P (x)
. (47)

Observe that

G′(x) =

∑
1≤i<j≤n

(
λiyλ

j
z − λjyλiz

)
f 2
j (x)`′ij(x)

〈λz, f(x)〉2
. (48)

Hence the EMWR varies with respect to x in general. Nevertheless, we can show that in
the case of two ambiguous states (n = 2), the monotonic behavior of this important term
is independent of the value of the loss. We defer the treatment of this case to Subsection
4.2. Furthermore, the behavior of the EMWR is inconclusive with respect to the degree
of ambiguity aversion.

4 Two important special cases

4.1 Ambiguity-neutral DMs

Let us study the case of ambiguity-neutral DMs. In the context of the smooth model,
this translates to φA and φP being linear. Without loss of generality, we can let φA and
φP be identity functions. The OCP of interest is thus:

max
(I(·),π)

∫
Ix

u(WA − π − x+ I(x))f̄(x)dx (49a)

s.t. I(x) ∈ [0, x], ∀x ∈ Ix, (49b)
π ∈ Iπ ≡ [π, π], (49c)

π ≥
∫
Ix

(I(x) + ψ(I(x))f̄(x)dx, (49d)

where f̄ ≡
∑n

i=1 pifi is the ambiguity-neutral density defined in (9). Since λ0 > 0 and
µh > 0 as previously remarked, the ratio of EMW simplifies to a positive constant:

G(x) =
λ0f̄(x)

µhf̄(x)
=
λ0

µh
≡ λ̃0 > 0. (50)

In this case the deductible x1 is defined as the unique solution to Hω(x)|ω=0 while the
upper limit x2 is the unique solution to Hω(x)|ω=1. Moreover, the co-insurance equation
(46) simplifies to:

I ′(x) =
ru(WA(x))

ru(WA(x)) + ψ′′(I(x))
1+ψ′(I(x))

, (51)

which depends on x if and only if the cost of indemnity provision ψ is not linear. Observe
that in this case K(x) in (37) becomes:

K(x) = u′(WA − π − x)λ̃0 − (1 + ψ′(0)). (52)

We obtain the following result. Consider the case where both decision makers are ambi-
guity neutral. The optimal indemnity schedule entails a unique deductible x1 ∈ (0, x̄),
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defined as the zero of K(x) in (52). The optimal contract (I, π) satisfies:

I(x) =

{
0 x ∈ [0, x1],

Σ−1
x (λ̃0) ∈ (0, x) x ∈ (x1, x̄],

(53)

and the optimal premium π ∈ (π, π) is determined by the saturated participation con-
straint of the insurer:

π =

∫ x̄

x1

(I(x) + ψ′(I(x)))f̄(x)dx, (54)

where f̄ is the ambiguity-neutral density defined in (9). Moreover, indemnity beyond the
deductible x1 is characterized by:

I ′(x) =
ru(WA − π − x+ I(x))

ru(WA − π − x+ I(x)) + ψ′′(I(x))
1+ψ′(I(x))

, (55)

where ru(·) = −u′′(·)
u′(·) is the Arrow-Pratt absolute risk aversion.

Proof. See Subsection 6.7. �

Observe that if the cost ψ of indemnity provision is linear (constant loading), then
the differential equation characterizing co-insurance implies that I ′(x) = 1 for all losses
beyond the deductible. In other words, the contract is a straight deductible, as is obtained
in Proposition 1 of Gollier (2014). Moreoever, full insurance under fair pricing can also
be proven using our approach. These results are summarized in the following corollary.
Suppose that the cost of indemnity provision is linear:

ψ(I) = mI, m > 0. (56)

Then the optimal insurance contract is a straight deductible, namely that the pair (I, π)
satisfies

I(x) =

{
0 x ∈ [0, x1],

x− x1 x ∈ (x1, x̄].
(57)

and
π = (1 +m)

∫ x̄

x1

(x− x1)f̄(x)dx. (58)

Moreover, full insurance is optimal if and only if insurance is actuarially fair, namely if
and only if m = 0.3

Proof. See Subsection 6.8 �

Hence if contracting parties are ambiguity-neutral, the introduction to ambiguity
does not alter the shape of the optimal contract. In particular, the function form of the
indemnity schedule is robust to the introduction of ambiguity.

3Note that full insurance is just a special case of a straight deductible policy with a deductible equal
to zero.

13



4.2 Two ambiguous states

Recall from our discussion in Section 3.2 that in general the sign of G′ may vary with
respect to x. Nevertheless, when there are two ambiguous states, the monotone likelihood
ranking hypothesis (Assumption 5) allows us to say more.

Lemma 4. In the case of two ambiguous states n = 2, the monotonic behavior of G, the
ratio of EMWs, is independent of the size of the loss. Furthermore, the EMWs of both
DMs are increasing (A′ ≥ 0 and P ′ ≥ 0) on Ix.

Proof. See Subsection 6.9.
�

Recall that π ∈ {π, π} corresponds to the boundary cases discussed in Lemma 3. If
π ∈ (π, π), then we can rewrite (34) as:∫

Ix

u′(WA(x))〈λy, f(x)〉dx = 〈λz,1〉, (59)

where WA(x) = WA − π − x + I(x) and 1 denotes the n-dimensional vector with all
elements being equal to one. Since the RHS is strictly positive, we can divide both sides
of (59) by this term, obtaining:∫

Ix

u′(WA(x))G(x)f̃(x)dx = 1, (60)

where

f̃(x) =
〈λz, f(x)〉
〈λz,1〉

=
n∑
i=1

λizfi(x)∑n
j=1 λ

j
z

. (61)

Observe that f̃ in (61) is strictly positive on Ix and
∫
f̃(x)dx = 1. Hence it is a density

function. In particular, it is a density function that deviates from the ambiguity-neutral
density by the insurer’s ambiguity aversion. Specifically, if the insurer is ambiguity-
neutral then f̃ ≡ f̄ . If G′ ≥ 0, then K defined in (37) is strictly increasing. An optimum
is either one of the corner cases discussed in Lemma 3, or consists of the pair (I, π) such
that the indemnity function is of the form:{

I(x) = 0 x ∈ [0, x1],

I(x) ∈ (0, x] x ∈ (x1, x̄],
(62)

where x1 ∈ (0, x̄), the deductible, is the unique solution to K(x) = 0. The associated
premium π ∈ (π, π) satisfies:

n∑
i=1

piφP

(
WP + π −

∫
Ix

(I(x) + ψ(I(x))fi(x)dx

)
= φP (WP ). (63)

Moreover if ψ is linear, then in consideration of L defined in (38), one of the following
cases could occur.

• If L(x̄) ≥ 0, then there exists a unique x2 ∈ (x1, x̄], the smallest solution to L(x) =
0, such that an optimal indemnity function satisfies:

I(x) =


0 x ∈ [0, x1],

Σ−1
x (G(x)) x ∈ (x1, x2),

x x ∈ [x2, x̄].

(64)
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• If L(x̄) < 0, then an optimal indemnity function has the form:

I(x) =

{
0 x ∈ [0, x1],

Σ−1
x (G(x)) x ∈ (x1, x̄].

(65)

Proof. See Subsection 6.10 �

An immediate consequence of Proposition 4.2 is that when the insurer is ambiguity-
neutral and the policyholder ambiguity-averse, an optimal insurance policy necessarily
involves a deductible since in this case the change in the expected marginal welfare ratio
is entirely determined by the change in the expected marginal welfare of the policyholder,
i.e., G′/G = A′/A, which must be positive in view of Lemma 4. In the case of two am-
biguous states (n = 2) with ambiguity-averse policyholder and ambiguity-neutral insurer,
there exists a unique x1 ∈ (0, x̄), called the deductible, such that K(x1) = 0. An opti-
mum is either one of the corner cases discussed in Lemma 3, or is such that the indemnity
function has a deductible x1, namely that:{

I(x) = 0 x ∈ [0, x1],

I(x) ∈ (0, x] x ∈ (x1, x̄].
(66)

The associated premium π ∈ (π, π) satisfies:

π =

∫ x̄

x1

(I(x) + ψ(I(x)))f̄(x)dx. (67)

Moreover if ψ is linear, then one of the following forms of co-insurance beyond a deductible
can occur.

• If L(x̄) ≥ 0, then there exists a unique x2 ∈ (x1, x̄], the smallest solution to L(x) =
0, such that an optimal indemnity function is of the form:

I(x) =


0 x ∈ [0, x1],

Σ−1
x (A(x)/µh) x ∈ (x1, x2),

x x ∈ [x2, x̄].

(68)

• If L(x̄) < 0, then an optimal indemnity function satisfies:

I(x) =

{
0 x ∈ [0, x1],

Σ−1
x (A(x)/µh) x ∈ (x1, x̄].

(69)

Moreover, the co-insurance rate is given by

I ′(x) =
ru(WA(x)) + A′(x)

A(x)

ru(WA(x))
. (70)

Proof. See Subsection 6.11. �
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Note that the existence of a threshold x2 beyond which the deductible disappears
completely (first case in Proposition 6.11) depends on the sign of L(x̄), which in turn
depends on the optimal premium and the values of the co-states λy and λz. This poses
challenges to ex-ante checking whether L(x̄) is negative. A potential solution is to perform
numerical simulation, the idea of which is discussed in the conclusion.

As is well-known in the literature, a disappearing deductible kind of contract gives
rise to ex-post moral hazard. In other words, policyholders may intentionally increase
the loss to raise indemnity. The only possibility to rule out a disappearing deductible in
this particular case is to set A′ = 0 so that the contract becomes a straight deductible.
Nevertheless this is not true in general.

To illustrate this point, consider the contract of the form (69) where insurance beyond
the deductible is captured by the co-insurance rule (70). A straight deductible contract
in this case would require I ′(x) = 0 on [0, x1] and I ′(x) = 1 on (x1, x̄]. Recall that

A′(x) = λ0
p1p2 (φ′A(y1(x̄))− φ′A(y2(x̄))) f 2

2 (x)`′12(x)

f̄ 2(x)
, (71)

where f̄ again denotes the ambiguity-neutral density. Clearly A′(x) = 0 if and only if
y1(x̄) = y2(x̄) or `′12(x) = 0. Using integration by parts and the hypothesis I ′(x) = 1 on
(x1, x̄], we have:

y1(x̄)− y2(x̄) =

∫ x1

0

u′(WA(x))(F1(x)− F2(x))dx. (72)

Suppose there exists a sub-interval (i.e. a subset of positive measure) of [0, x1] such that
F1(x) > F2(x), then (72) implies y1(x̄) > y2(x̄) by the strict monotonicity of the utility
function. In this case A′(x) = 0 on (x1, x̄] if and only if `′12(x) = 0 on this interval.4
Intuitively, this implies that the size of the loss is not informative about the second-order
state in which the loss is realized. In other words, so long as the second-order states
are indistinguishable beyond the deductible (i.e., when it matters), straight deductibles
would remain optimal.

At fist glance, the fact that straight deductibles are not optimal under unilateral risk
and ambiguity aversion seem puzzling. Shouldn’t the insurer, the party neutral to both
types of uncertainty, bear all the uncertainty beyond a certain threshold, as in the case
of pure risk? Some reflection suggests that the inefficiency of straight deductibles is es-
sentially a consequence of ambiguity and the fact that the ambiguous state itself cannot
be included in the contract. In other words, all that matters for the indemnity is the size
of the loss realized, not the ambiguous state in which it is realized. To illustrate, take
the case of health insurance in the case of contracting a rare disease, which typically in-
volves some degree of ambiguity. The hypothesis of non-inclusion of the ambiguous state
implies that it is impossible (or perhaps infeasible) to specify in the contract whether
a loss x occurs to a policy holder under a rare or normal condition (e.g., severe cold
versus covid). Once we allow for the contract to specify the ambiguous states, then we
can write contracts in the form (Ii(·), πi) for each second-order state i, then straight
deductibles remain optimal under one-sided risk and ambiguity aversion. To put it differ-
ently, the incompleteness of the contract renders it impossible to efficiently allocate risk
and ambiguity between the contracting parties according to their preferences.

4If there exists a sub-interval of (x1, x̄] in which `′12(x) < 0, then A′(x) > 0 in this interval in view of
(71), implying that I ′(x) > 1, contradicting the straight deductible hypothesis.
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5 Conclusion

We set out to determine the optimal insurance policy under ambiguity and ambiguity
aversion in the sense of Klibanoff et al. (2005). First, we provide a rigorous proof of
the existence of an optimal insurance policy in presence of ambiguity. Next, we derive a
risk-and-ambiguity sharing rule, which implies that in the case of two ambiguous states
and one-sided ambiguity aversion, the optimal contract necessarily entails disappearing
deductibles when the states can be ranked according to the monotone likelihood ratio
property. Moreover, it is possible that the deductible disappears completely, suggesting
full insurance beyond a sufficiently large loss.

There are two main limitations to our analysis. First, most concrete analytical results
are restricted to the case of two ambiguous states. Second, we have proved existence but
have not addressed uniqueness. Both of these issues, while challenging analytically, can be
resolved numerically via the shooting method. The idea behind this method is homotopy,
or continuous deformation of a well-known solution. In particular, let us first discuss the
issue of two ambiguous states. Observe that the unambiguous (pure-risk) setting is simply
one where the probability of one of the ambiguous states is null. Numerically solving for
the contract in the two-state case involves gradually deforming the pure-risk contract by
gradually increasing the prior of the additional state. A bifurcation being detected in the
process might suggest a change of behavior (i.e., functional form or qualitative features)
of the contract moving from the pure-risk to the ambiguous setting. Once the two-
ambiguous-state contract has been solved for numerically, it can be used as the starting
point to solve for three-ambiguous-state contract, and so on. In principle, this method
could be used to successively determine the optimal contract for any setting beyond
the case of two ambiguous states. The uniqueness issue can be addressed in a similar
manner. We know from the existing literature that optimal insurance contracts are unique
in unambiguous settings. If a bifurcation is detected while performing continuation on the
prior probability of the additional second-order state (for any set of chosen parameters),
then uniqueness is disproved. Otherwise, uniqueness might still hold. The execution
of this method, however, is beyond the scope of this paper and is reserved for future
research.
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6 Proofs

6.1 Proof of Proposition 3.1

Let δ = inf(J,π)∈U×Iπ g(J, π). Consider a sequence of trajectories {Xk(·)}k∈N associated
with the sequence of admissible controls {Jk(·)}k∈N defined by

Xk(x) =

 yk(x)
zk(x)
πk(x)

 =


(
yki (x)

)
i∈I(

zki (x)
)
i∈I

πk

 , x ∈ Ix \ {0},

such that g(Jk, πk) −→ δ as k −→∞, where

yki (x) =

∫ x

0

u(WA − πk − t+ tJk(t))fi(t)dt, i ∈ I,

zki (x) =

∫ x

0

(WP + πk − tJk(t)− ψ(tJk(t)))fi(t)dt, i ∈ I.

By the weak-? compactness of U , the sequence {Jk(·)}k∈N converges to J∗(·) ∈ U up to
some subsequence, i.e., Jk −→ J∗. Likewise the compactness of Iπ implies πk −→ π∗ ∈ Iπ
up to some subsequence. Let X̄∗ stand for the limiting trajectory defined by

X̄∗(x) =

 ȳ∗(x)
z̄∗(x)
π∗

 =

 (z̄∗i (x))i∈I
(ȳ∗i (x))i∈I

π∗

 , x ∈ Ix \ {0},

where

ȳ∗i (x) =

∫ x

0

u(WA − π∗ − t+ tJ∗(t))fi(t)dt, i ∈ I,

z̄∗i (x) =

∫ x

0

(WP + π∗ − tJ∗(t)− ψ(tJ∗(t))) fi(t)dt, i ∈ I.

The remain of the proof is completed in two steps. First, we show that the limiting
trajectory is shown to satisfy the constraint. Second, we prove that this trajectory is an
optimal one.

6.1.1 The limiting trajectory verifies the constraint

Let us now show that h(J∗, π∗) ≥ 0. By construction h(Jk, πk) ≡
∑n

i=1 piφP (zki (x̄))−V̄ ≥
0 for all k ∈ N. For i ∈ I and k ≥ 0, let us write

zki (x̄) =

∫
Ix

(WP + π∗ − xJk(x)− ψ(xJk(x)))fi(x)dx+ ∆k,

where ∆k =
∫
Ix

(
πk − π∗

)
fi(x)dx = πk − π∗. Clearly ∆k tends to zero as k tends to

infinity. Let Γi(J
k(x)) ≡ −(W +π∗−xJk(x)−ψ(xJk(x)))fi(x), then Γi(J

k(x)) is convex
in Ik(x) since ψ(·) is convex in Jk(x) and fi(x) > 0 by Assumption 4. Hence from Lee
and Markus (1967), we have∫

Ix

Γi(J
∗(x)) ≥ lim inf

∫
Ix

Γi(J
k(x))dx,
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or

−z̄∗i (x̄) ≥ lim inf(−zki (x̄)− δk)
⇐⇒ z̄∗i (x̄) ≥ lim sup zki (x̄).

By the continuity of z̄∗i , for all ε > 0, there exists a sufficiently large positive integer K
such that

z̄∗i (x̄) ≥ zKi (x̄)− ε.

Since φP is increasing,
φP (z̄∗i (x̄)) ≥ φP (zKi (x̄)− ε). (73)

By the first fundamental theorem of calculus,

φP (zKi (x̄))− φP (zKi (x̄)− ε) =

∫ b

a

φ′P (ζ)dζ,

where b ≡ zKi (x̄) and a = b− ε. Since φ′P is bounded by Assumption 10, let M ∈ R+ be
an upperbound of φ′P over [a, b]. Then

φP (zKi (x̄))− φP (zKi (x̄)− ε) ≤M(b− a) = Mε,

implying
φP (zKi (x̄)− ε) ≥ φP (zKi (x̄))−Mε,

which, together with (73) imply

φP (z̄∗i (x̄)) ≥ φP (zKi (x̄))−Mε (74)

=⇒
n∑
i=1

piφP (z̄∗i (x̄)) ≥
n∑
i=1

piφP (zKi (x̄))−Mε. (75)

Observe that
∑n

i=1 piφP (zKi (x̄)) ≥ V̄ since
∑n

i=1 piφP (zki (x̄)) ≥ V̄ for all k ≥ 0. Thus
from (75), we have

n∑
i=1

piφP (z̄∗i (x̄)) ≥ V̄ −Mε.

Since ε was arbitrary, letting ε → 0 completes the proof. We next show that the cost
functional achieved by the limiting trajectory is optimal.

6.1.2 The optimality of the limiting trajectory

We now prove that the cost achieved by the limiting trajectory is optimal, i.e., g(J∗, π∗) =
δ, where δ = inf(J,π)∈U×Iπ g(J, π). Since (J∗, π∗) is admissible, g(J∗, π∗) ≥ δ. It remains
to show that g(J∗, π∗) ≤ δ. Let us write:

yki (x̄) =

∫
Ix

u(WA − π∗ − x+ xJk(x))fi(x)dx+ ∆k
i ,

where

∆k
i ≡

∫
Ix

[
u(WA + πk − x+ xJk(x))− u(WA + π∗ − x+ xJk(x))

]
fi(x)dx. (76)
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Observe that ∆k
i tends to zero as k tends to infinity since u is bounded and continuous,

and fi is continuous. Let Γi(J
k(x)) ≡ −u(w − π∗ − x+ xJk(x))fi(x). Then Γi is convex

in Jk since −u is convex and fi is strictly positive. Again from Lee and Markus (1967),∫
Ix

Γi(J
∗(x))dx ≤ lim inf

∫
Ix

Γ(Jk(x))dx

−ȳ∗i (x̄) ≤ lim inf(−yki (x̄)−∆k
i )

ȳ∗i (x̄) ≥ lim sup yki (x̄).

Proceed similarly to the proof of the previous lemma, we have that for all ε > 0, there
exists a sufficiently large integer K such that

−
n∑
i=1

piφA (ȳ∗i (x̄)) ≤ −
n∑
i=1

piφA
(
yKi (x̄)

)
+Mε.

Letting ε tend to zero yields:

g(J∗, π∗) ≤ g(JK , πK),

which implies that g(J∗, π∗) is a lower bound for g(JK , πK). Hence g(J∗, π∗) ≤ δ by
definition of the infimum, as desired.

To sum up, we have proved that the limiting trajectory satisfies the constraint and
the cost achieved by this trajectory is the minimum cost. Thus the pair (J∗, π∗) is an
optimal pair, and the associated insurance contract (I∗, π∗), where

I∗(x) =

{
0 x = 0

xJ∗(x) x ∈ (0, x̄]
(77)

is an optimal one.

6.2 Proof of Lemma 1

Suppose by contradiction that h(J, π) > 0 for an optimal pair (J, π). We have

n∑
i=1

piφP

(∫
Ix

(WP + π − xJ(x)− ψ(xJ(x)))fi(x)dx

)
− V̄ > 0

⇐⇒
n∑
i=1

piφP

(
WP + π −

∫
Ix

(xJ(x) + ψ(xJ(x))) fi(x)dx

)
− V̄ > 0.

If J(x) = 1 for a.e. x ∈ Ix, then by the continuity of φP with respect to π there exists
some positive real number η > 0 such that h(J, π − η) > 0. Since the cost is strictly
increasing in π, lowering π reduces the cost. In this case we have:

h(J, π − η) > 0, (78)
g(J, π − η) < g(J, π), (79)

implying that the contract (J, π − η) is feasible and yields a lower cost. Hence (J, π) is
not optimal, a contradiction.
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If J is not equal to 1 almost everywhere on Ix, then by the continuity of the mapping
J 7→ xJ + ψ(xJ) and strict positivity of the conditional densities, there exists Kx ⊂ Ix
of positive measure and a sufficiently small εK > 0 satisfying 0 ≤ J(x) + εK ≤ 1 for all
x ∈ Kx such that g(J̃ , π) ≥ 0, where J̃ : (0, x̄]→ [0, 1] is defined by

J̃(x) =

{
J(x) x ∈ (0, x̄] \Kx,

J(x) + εK x ∈ Kx.

Since the cost is strictly decreasing in J , the modified control J̃ yields a lower cost, i.e.,
g(J̃ , π) < g(J, π), contradicting the hypothesis that (J, π) is optimal.

We conclude that if (J, π) constitutes an optimal pair, then h(J, π) = 0.

6.3 Proof of Proposition 3.2

Let us first prove two lemmas.

Lemma 5. The normal cone at X(0) depends on the value of π. In particular:

• If π ∈ (π, π), then NM0(X(0)) = Rn × Rn × {0};

• If π = π, then NM0(X(0)) = Rn × Rn × R−;

• If π = π, then NM0(X(0)) = Rn × Rn × R+.

The normal cone at X(x̄) is:

NM1(X(x̄)) =

 0
−µh∇zh(J, π)

−µh∇πh(J, π)− µπ + µπ

 . (80)

Proof. First, consider NM0(X(0)), where X(0) = (0, 0, π). Let ξ = (ξy, ξz, ξπ) be an
element in Rn × Rn × R. Let M0 be an element in M0, hence M0 = (0, 0, a) for some
a ∈ Iπ. The normal cone toM0 at X(0) can be written as:

NM0(X(0)) =
{
ξ ∈ R2n+1 | 〈ξ,M0 −X(0)〉 ≤ 0, ∀M0 ∈M0

}
=⇒ NM0(X(0)) =

{
ξ ∈ R2n+1 | ξπ(a− π) ≤ 0, ∀a ∈ Iπ

}
.

One of the following cases can occur.

• If π ∈ (π, π), then ξπ = 0 since ξπ(a − π) must be negative for any a in Iπ. Hence
in this case,

NM0(X(0)) = Rn × Rn × {0}. (81)

• If π = π, then a − π ≥ 0 for all a ∈ Iπ. Thus ξπ(a − π) is negative for any a ∈ Iπ
requires ξπ ≤ 0, implying that:

NM0(X(0)) = Rn × Rn × R−. (82)

• If π = π, then a− π ≤ 0 for all a ∈ Iπ, implying that ξπ ≥ 0 and the normal cone
in this case is:

NM0(X(0)) = Rn × Rn × R+. (83)
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Let us now compute the normal cone at the target computeNM1(X(x̄)), whereX(x̄) =
(y(x̄), z(x̄), π). Following Clarke (1990), we can write

NM1(X(x̄)) = −µh∇Xh(J, π) + µπ∇X(π − π) + µπ∇X(π − π), (84)

where µ = (µh, µπ, µπ) satisfies the complementary slackness conditions

µπ ≥ 0, µπ(π − π) = 0, (85)
µπ ≥ 0, µπ(π − π) = 0. (86)

Since

∇Xh(J, π) = (0,∇zh(J, π),∇πh(J, π)), (87)
∇X(π − π) = (0, 0,−1), (88)
∇X(π − π) = (0, 0, 1), (89)

we can rewrite (84) as:

NM1(X(x̄)) =

 0
−µh∇zh(J, π)

−µh∇πh(J, π)− µπ + µπ

 . (90)

�

Lemma 6. If π ∈ (π, π), then λπ(0) = 0. If π = π, then λπ(0) ≤ 0. If π = π, then
λπ(0) ≥ 0.

Proof. The proof follows directly from condition (28) applied to different forms ofNM0(X(0))
depending on where π takes value (at the optimum). In particular, if π ∈ (π, π), then
the normal cone takes the form (81), implying that λπ(0) = 0. If π = π, then the normal
cone takes the form (82), implying that λπ(0) ≤ 0. Finally if π = π, then the normal
cone in (83) implies that λπ(0) ≥ 0. �

From the adjoint equation (25), we have that for almost every x in Ix, λ̇y(x)

λ̇z(x)

λ̇π(x)

 =

 0
0

u′(WA − π − x+ xJ(x)) 〈λy, f(x)〉 − 〈λz, f(x)〉

 . (91)

Hence λy(x) = cons ≡ λy and λz(x) = cons ≡ λz for all x ∈ Ix. In view of (90) we can
rewrite the tranversality condition (29) as: λy

λz
λπ(x̄)

 =

 −λ0∇yg(J, π)
µh∇zh(J, π)

∇π (−λ0g(J, π) + µhh(J, π)) + µπ − µπ

 .

This yields

λy = λ0 (piφ
′
A(yi(x̄)))i∈I , (92)

λz = µh (piφ
′
P (zi(x̄)))i∈I , (93)

λπ(x̄) = λ0

n∑
i=1

piφ
′
A(yi(x̄))

∂yi(x̄)

∂π
+ µh

n∑
i=1

piφ
′
P (zi(x̄))

∂zi(x̄)

∂π
+ µπ − µπ. (94)
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Let us substitute (92) and (93) into (94) to express λπ(x̄) more compactly as

λπ(x̄) =

〈
λy,

∂y(x̄)

∂π

〉
+

〈
λz,

∂z(x̄)

∂π

〉
+ µπ − µπ. (95)

Observe that∫
Ix

λ̇π(x)dx =

∫
Ix

u′(WA − π − x+ xJ(x)) 〈λy, f(x)〉 dx−
∫
Ix

〈λz, f(x)〉 dx

= −
〈
λy,

∂y(x̄)

∂π

〉
−
〈
λz,

∂z(x̄)

∂π

〉
, (96)

where ∂zi(x̄)
∂π

= 1 for all i ∈ I. Hence in view of (95) and (96)

λπ(0) = λπ(x̄)−
∫
Ix

λ̇π(x)dx,

= 2

(〈
λy,

∂y(x̄)

∂π

〉
+

〈
λz,

∂z(x̄)

∂π

〉)
+ µπ − µπ.

(97)

Observe that when π ∈ (π, π), we have (µπ, µπ) = 0 ∈ R2 thanks to the complementary
slackness conditions (85) and (86). Hence for π ∈ (π, π), we have:

λπ(0) = 2

(〈
λy,

∂y(x̄)

∂π

〉
+

〈
λz,

∂z(x̄)

∂π

〉)
= 2λπ(x̄). (98)

To arrive at (34), recall that λπ(0) = 0 for interior values of π by Lemma 6.

6.4 Proof of Lemma 2

Suppose by contradiction that λ0 = µh = 0. Then equations (30) and (31) imply:

λz = λy = 0 ∈ Rn. (99)

Hence from (91)
λ̇π(x) = 0, a.e. x ∈ Ix, (100)

implying that λπ(x) is constant with respect to x. Denote

λπ(x) = λπ, ∀x ∈ Ix. (101)

Then from (95) we have:
λπ = µπ − µπ. (102)

Consider the following cases.

• If π ∈ (π, π), then µπ = µπ = 0, implying that λπ = 0 ∈ R2n+1, violating the
condition (λ, λ0) 6= 0.

• If π = π, then λπ = −µπ ≤ 0. Non-negativity implies that µπ = 0, which in turn
implies λπ = 0, again violating the condition (λ, λ0) 6= 0.

• If π = π, then λπ = µπ ≥ 0. If µπ = 0, then λπ = 0 and a similar contradiction
ensues. If µπ > 0, then λπ(0) = λπ > 0, inconsistent with Lemma 6.

Thus in any case, a contradiction follows if µh = λ0 = 0, establishing the lemma.
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6.5 Proof of Lemma 3

Suppose that λ0 = 0. Then µh > 0 by Lemma 2. By equations (30) and (31), the
costate λy is a zero vector and the costate λz has strictly positive components, implying
that 〈λy, f(x)〉 = 0 and 〈λz, f(x)〉 > 0 since the densities are strictly positive. Hence by
Assumption 7,

Hω = −x(1 + ψ′(xω)) 〈λz, f(x)〉 < 0, a.e. x ∈ Ix, (103)
Hωω = −x2ψ′′(xω) 〈λz, f(x)〉 ≤ 0, a.e. x ∈ Ix, (104)

implying that J(x) = 0 for a.e. x ∈ Ix. By Remark 3.1 uniformly zero insurance
constitutes an optimum if and only if π = π = 0 .

Next, consider the case µh = 0, which by Lemma 2 implies λ0 > 0. Thus 〈λy, f(x)〉 > 0
and 〈λz, f(x)〉 = 0. Hence by Assumption 8,

Hω = xu′(WA − π − x+ xω) 〈λy, f(x)〉 > 0, a.e. x ∈ Ix, (105)
Hωω = x2u′′(WA − π − x+ xω) 〈λy, f(x)〉 < 0, a.e. x ∈ Ix, (106)

implying that J(x) = 1 for a.e. x ∈ Ix. Again by Remark 3.1, if φP is strictly concave
then the admissible set is empty, violating Proposition 3.1. This implies that if µh = 0
at an optimum if and only if φP is identity (i.e., if the insurer is ambiguity-neutral). In
this case, the admissible set is a singleton containing only the pair (J = 1, π = π), which
is then trivially optimal.

6.6 Proof of Proposition 3.2

Since the Hamiltonian is strictly concave in ω for a.e. x ∈ Ix, one of the following must
occur:

• either Hω(x)|ω=0 ≤ 0 ⇐⇒ K(x) ≤ 0, then J(x) = 0;

• or Hω(x)|ω=1 ≥ 0 ⇐⇒ L(x) ≥ 0, then J(x) = 1;

• or K(x) > 0 and L(x) < 0, then J(x) ∈ (0, 1) is characterized by:

u′(WA(x))G(x) = 1 + ψ′(xJ(x))

u′(WA − π − x+ xJ(x)) = 1 + ψ′(xJ(x)), (107)

which can be inverted to yield:

xJ(x) = Σ−1
x (G(x)). (108)

We can then recover the optimal indemnity function I in (45) associated with the optimal
coverage function J in (44) by recalling that I(x) = 0 for x = 0 and I(x) = xJ(x) for
x > 0. The coinsurance rate (46) is obtained by differentiating (107) with respect to x
upon substituting I(x) = xJ(x) into the expression. In particular,

u′(WA − π − x+ I(x))G(x) = 1 + ψ′(I(x)), (109)
u′′(WA(x))(I ′(x)− 1)G(x) + u′(WA(x))G′(x) = −ψ′′(I(x))I ′(x), (110)

implying that:
−u′′(WA(x))

u′(WA(x)︸ ︷︷ ︸
ru(WA(x))

(1− I ′(x)) +
G′(x)

G(x)
=
ψ′′(I(x))I ′(x)

1 + ψ′(I(x))
, (111)

which yields (46) upon gathering I ′(x) and simplifying.
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6.7 Proof of Proposition 4.1

The special cases associated to either λ0 = 0 or µh = 0 are discussed in Lemma 3. In
particular, the optimal contract is the trivial one (I = 0, π = π) if λ0 = 0, or the uniformly
full insurance one (I = x, π = π) if µh = 0. For µh > 0 and λ0 > 0, the optimal premium
takes an interior value π ∈ (π, π̄). Invoking Proposition 3.2 for φ′P = φ′A = 1 (the DMs
are ambiguity-neutral), we can write:∫

Ix

u′(WA − π − x+ I(x))λ̃0f̄(x)dx = 1 (112)

Since x ≥ I(x) for all x ∈ Ix and u is concave:

u′(WA − π) ≤ u′(WA − π − x+ I(x)), ∀x ∈ Ix, (113)

with strict inequality whenever x > I(x). Hence

λ̃0

∫
Ix

u′(WA − π − x+ I(x))f̄(x) ≥ λ̃0u
′(WA − π)

1 ≥ u′(WA − π)λ̃0. (114)

Since ψ′ > 0, in view of (52) we have:

K(0) = u′(WA − π)λ̃0 − (1 + ψ′(0)) < 0. (115)

Note that since u and ψ are continuously differentiable, the function K in (52) is also
continuously differentiable. Furthermore by the strict concavity of u,

K ′(x) = −u′′(WA − π − x) > 0, (116)

implying thatK is continuous and strictly increasing on Ix. HenceK is strictly increasing
and satisfies K(0) < 0. If K(x̄) ≤ 0, then K(x) ≤ 0 on Ix, implying that I(x) = 0 for all
x ∈ Ix, which is not optimal for π > 0 by Lemma 3. Hence K(x̄) > 0. By continuity there
exists x1 ∈ (0, x̄), called the deductible, such that K(x1) = 0. By the strict monotonicity
of K the deductible x1 is unique. Now since K is strictly increasing, for all losses below
x1 we have K(x) ≤ 0, or Hω|ω=0(x) ≤ 0, implying that I(x) = 0 for all x ≤ x1. Likewise
for all x > x1, we have Hω|ω=0(x) > 0, implying that I(x) > 0 for for such losses. Observe
that under ambiguity neutrality,

Hω|ω=1(x) ≡ L(x) = u′(WA − π)λ̃0 − (1 + ψ′(x)), (117)

which is continuous and differentiable with respect to x. Since ψ′ is convex,

L′(x) = −ψ′′(x) ≤ 0, ∀x ∈ (0, x̄), (118)

with strict inequality if ψ is strictly convex. This implies L(x̄) ≤ L(0). But L(0) = K(0),
which is strictly negative as previously shown, implying that L(x) < 0 for all x ∈ (0, x̄).
Hence full insurance I(x) = x is never reached for losses beyond x1. Therefore for
x ∈ (x1, x̄], we have I(x) ∈ (0, x) satisfying

u′(WA − π − x+ I(x))λ̃0 = 1 + ψ′(I(x))

I(x) = Σ−1
x (λ̃0). (119)

Finally, the co-insurance equation (55) is obtained from (46) for G′ = 0. This completes
the proof.
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6.8 Proof of Corollary 4.1

The shape of the indemnity function (57) can be obtained immediately by solving the
initial value problem:

I ′(x) = 1, I(x1) = 0. (120)

The associated premium (58) is obtained by substituting (57) into the equality constraint
(54). We now show full insurance under no loading. Without loss of generality let us
normalize λ0 = 1. In this case (112) simplifies to:∫

Ix

u′(WA − π − x+ I(x))f̄(x)dx = µh. (121)

By Corollary 4.1, the contract in this case has the shape of a straight deductible of size
x1, which is characterized by:

K(x1) = 0 ⇐⇒ u′(WA − π − x1) = µh(1 + L). (122)

Equation (121) can be rewritten as:∫ x1

0

u′(WA − π − x)f̄(x)dx+

∫ x̄

x1

u′(WA − π − x1)f̄(x)dx = µh. (123)

Observe that by IBP, the first term on the LHS becomes:

u′(WA − π − x1)F̄ (x1) +

∫ x1

0

u′′(WA − π − x)F̄ (x)dx, (124)

where F̄ (x) ≡
∫ x

0
f̄(t)dt is the ambiguity-neutral cumulative distribution function (cdf),

with F̄ (0) = 0. Likewise, using F̄ (x̄) = 1, the second term on the LHS of (123) can be
rewritten as:

(1− F̄ (x1))u′(WA − π − x1). (125)

Combining (124) and (125) yields:

u′(WA − π − x1) +

∫ x1

0

u′′(WA − π − x)F̄ (x)dx = µh. (126)

We can now use (122) to substitute out µh in (126), which gives:

m

m+ 1
=

∫ x1

0

−u′′(WA − π − x)

u′(WA − π − x1)
F̄ (x)dx. (127)

Since the density is strictly positive everywhere and the policyholder is strictly risk-averse,
the term inside the integral on the RHS of the expression above is strictly positive. It is
then immediate to see that x1 = 0 if and only if m = 0.

6.9 Proof of Lemma 4

Observe that both A and P defined in (39) and (40), respectively, are strictly positive-
valued, bounded and continuously differentiable on (0, x̄). Differentiating with respect to
x yields:

A′(x) = λ0

∑
1≤i<j≤n pipj (φ′A(yi(x̄))− φ′A(yj(x̄))) f 2

j (x)`′ij(x)

〈p, f(x)〉2
, (128)
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and

P ′(x) = µh

∑
1≤i<j≤n pipj (φ′P (zi(x̄))− φ′P (zj(x̄))) f 2

j (x)`′ij(x)

〈p, f(x)〉2
. (129)

Thus in general (for n > 2) the monotonic behavior of A and P depends on the ordering
of the second-order states. In particular, a sufficient condition for A to be increasing is
that yi(x̄) ≥ yj(x̄) for all i < j since φA is concave and `′ij ≤ 0. Likewise a sufficient
condition for P to be increasing is zi(x̄) ≥ zj(x̄) for all i < j. By integration by parts
(IBP):

zi(x̄) = WP (x̄) +

∫
Ix

I ′(x) [1 + ψ′(I(x))]Fi(x)dx, (130)

yi(x̄) = u(WA(x̄)) +

∫
Ix

[1− I ′(x)]u′(WA(x))Fi(x)dx, (131)

where

WA(x) = WA − π − x+ I(x), (132)
WP (x) = WP + π − I(x)− ψ(I(x)). (133)

Hence

zi(x̄)− zj(x̄) =

∫
Ix

I ′(x)[1 + ψ′(I(x))](Fi(x)− Fj(x))dx, (134)

yi(x̄)− yj(x̄) =

∫
Ix

[1− I ′(x)](Fi(x)− Fj(x))dx. (135)

Since Fi(x) ≥ Fj(x) on Ix with strict inequality at least on a subset of positive-measured
of Ix by Assumption 5, the ordering of the states depend crucially on the magnitude of
I ′ relative to one. Observe that from Proposition 3.2,

I ′(x) ∈

{
0, 1,

ru(WA(x) + G′(x)
G(x)

ru(WA(x) + ψ′′(I(x))
1+ψ′(I(x))

)

}
. (136)

Notice that for n = 2, then (128) and (129) reduce to:

A′(x) = λ0
p1p2 (φ′A(y1(x̄))− φ′A(y2(x̄))) f 2

2 (x)`′12(x)

f̄ 2(x)
, (137)

P ′(x) = µh
p1p2 (φ′P (z1(x̄))− φ′P (z2(x̄))) f 2

2 (x)`′12(x)

f̄ 2(x)
. (138)

It is immediate from Assumption 5 that the signs of both A′ and P ′ (and likewise G′) are
independent of x. Next, using (135) and (134) for n = 2 yields:

z1(x̄)− z2(x̄) =

∫
Ix

I ′(x) [1 + ψ′(I(x))] (F1(x)− F2(x)) dx, (139)

y1(x̄)− y2(x̄) =

∫
Ix

[1− I ′(x)]u′(WA(x)) (F1(x)− F2(x)) dx, (140)

where WA(x) = WA − π − x + I(x). Recall that F1(x) − F2(x) ≥ 0 on Ix is implied by
Assumption 5. Since the sign of G′ is independent of the size of the loss, either G′ ≥ 0
or G′ ≤ 0. Let us consider two cases.
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Suppose that G′ ≥ 0. In this case I ′ ≥ 0 on Ix, implying that z1(x̄) ≥ z2(x̄) in view of
(139). But this implies, via (138) that P ′ ≥ 0 on Ix. Observe that (47) is equivalent to

A′

A
=
G′

G
+
P ′

P
, (141)

which must be positive since both terms on the RHS are positive. Hence A′ ≥ 0 since A
is strictly positive.

Suppose that G′ ≤ 0. In this case I ′(x) ≤ 1 on Ix, implying via (140) that y1(x̄) ≥
y2(x̄). Hence (137) implies A′ ≥ 0 on Ix. Again from (47) we can write:

P ′

P
= −G

′

G
+
A′

A
, (142)

implying that P ′ ≥ 0. This completes the proof.

6.10 Proof of Theorem 4.2

Observe that K and L defined in (37) and (38), respectively, are continuous and differ-
entiable. We have:

K ′(x) = −u′′(WA − π − x)G(x) + u′(WA − π − x)G′(x), (143)
L′(x) = u′(WA − π)G′(x)− ψ′′(x). (144)

Notice that if G′ ≥ 0, then K ′ above is strictly positive since G is strictly positive and
u is strictly increasing and strictly concave (Assumption 8). Moreover, the monotonicity
of G also implies:

G(0) ≤ G(x), x ∈ Ix. (145)

In addition, Assumption 6 and Assumption 8 imply

u′(WA − π) ≤ u′(WA(x)), x ∈ Ix. (146)

Since G and u′ are strictly positive, conditions (145) and (146) imply

u′(WA − π)G(0) ≤ u′(WA(x))G(x), x ∈ Ix. (147)

Taking expectation with respect to the density f̃ on both sides yields:

u′(WA − π)G(0) ≤
∫
Ix

u′(WA(x))G(x)f̃(x)dx (148)

u′(WA − π)G(0) ≤ 1, (149)

where the second line follows from (60). Since ψ′ > 0 (Assumption 7), this implies:

u′(WA − π)G(0)− (1 + ψ′(0)) < 0 (150)
K(0) < 0. (151)

If K(x̄) ≤ 0, then K(x) ≤ 0 on Ix since K is continuous, strictly increasing and K(0) < 0.
In this case I(x) = 0 on Ix, which constitutes an optimum if and only if π = π = 0 by
Lemma 3, contradicting the hypothesis that π takes an interior value. Hence K(x̄) > 0,
implying (by continuity and strict monotonicity) that there exists a unique deductible
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x1 ∈ (0, x̄) such that K(x1) = 0.
For losses beyond the deductible, consider L in (38). Note that by the strict concavity

of the Hamiltonian, K(x1) > L(x1), implying that L(x1) < 0. By continuity L(x) < 0 at
least on a sufficiently small open interval to the right of x1. Denote this interval (x1, x1+ε),
then on (x1, x1 + ε) we have K(x) > 0 and L(x) < 0, implying that I(x) ∈ (0, x) and is
characterized by I(x) = Σ−1

x (G(x)). Beyond x1 + ε the shape of the indemnity function
depends on the monotonic behavior of L. In view of (144), let us consider the following
cases.

1. If ψ is strictly convex, the sign of L′ is indeterministic and our analysis reaches an
impasse.

2. If ψ is linear, then L′(x) ≥ 0, implying that L is increasing. We know that L(x1) <
0. Consider the following subcases.

a. If L(x̄) < 0 then monotonicity implies L(x) < 0 on (x1, x̄]. Therefore on
(x1, x̄] the indemnity function satisfies I(x) ∈ (0, x) and is characterized by
I(x) = Σ−1

x (G(x)). In other words, the indemnity function has the form (65).

b. If L(x̄) ≥ 0 then by continuity the equation L(x) = 0 has a solution. Denote

S = {x ∈ (x1, x̄] | L(x) = 0}. (152)

It is easy to see that S is closed and bounded. Then we can uniquely define
x2 as the smallest element of S. In this case since L is increasing we have
L(x) ≥ L(x2) = 0 for all x ∈ [x2, x̄] and L(x) < 0 for all x ∈ (x1, x2). Hence
beyond x1, the indemnity function is characterized by:

I(x) =

{
Σ−1
x (G(x)) x ∈ (x1, x2),

x x ∈ [x2, x̄].
(153)

Therefore in this case the indemnity function has the form (64).

6.11 Proof of Proposition 4.2

It is immediate to see that in this case

G(x) =
A(x)

µh
, x ∈ Ix. (154)

Consequently G′(x) = A′(x)
µh

, implying that G′ ≥ 0 on Ix by Lemma 4. The rest of the
proof follows that of Theorem 4.2 verbatim.
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