
 

 

 

 

 

 

 

 

 

 

 

 

 

  

2023-06 

01 May 2023 

The Principal-Agent Model under Smooth 
Ambiguity 

My Dam and Yacine Chitour 

 



  



 



The principal-agent model under smooth
ambiguity

My Dam* Yacine Chitour† François Pannequin‡

May 15, 2019

Abstract

We characterize the symmetric information benchmark for the principal-
agent model under ambiguity in the sense of Klibanoff et al. (2005). We
recast the problem in an optimal control framework and proved the ex-
istence of an optimal wage function under a standard set of assump-
tions. When the principal is risk-averse, we show that optimal wage is
robust to ambiguity in the sense that it is nondecreasing in outcomes
regardless of the attitudes of the contracting parties towards ambiguity
and the number of ambiguous states under consideration. When the
principal is risk-neutral and there are only two ambiguous states, we
prove that unambiguous optimal wage is robust to ambiguity if ambi-
guity has an one-sided structure, namely that if ambiguity “contami-
nates” either the lower or the higher range of outcomes, but not both.
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Chapter nomenclature

Notation Meaning Reference page(s)
I Index set of (second-order) states 4
pi Prior on state i ∈ I 4
x̃ Outcome random variable 4
e Effort level 4
Ie Domain of effort 4
fi(x|e) State-i effort-e conditional density 4
Fi(x|e) State-i effort-e conditional density 4
Ix Common support of the conditional densities 4
c(·) Cost of exerting effort 6
w(·) Wage (the control function) 6
`ij(·|e) Effort-conditional likelihood ratio 5
v(·) Principal’s utility function 6
φP (·) Principal’s second-order utility (welfare) function 6
u(·) Agent’s utility function 6
φA(·) Agent’s second-order utility (welfare) function 6

Table 1: Notations used in the paper
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1 Assumptions and statement of the problem

Consider a principal-agent model where decision makers (DMs), the agent
and the principal in this case, face ambiguity in the distribution of the states.
Consequently, the distributions of outcomes are state-conditional. We as-
sume that the state space is finite, and the DMs have common priors over
the distribution of the states. Our objective is to determine an optimal wage
contract under symmetric information.

Notation 1. Throughout this paper, the subscripts A and P refer to the agent and
the principal, respectively.

Notation 2. The n-dimensional Euclidean space whose elements have all non-negative
coordinates is denoted by Rn

+. The n-dimensional Euclidean space whose elements
have all strictly positive coordinates are denoted by Rn

++

Assumption 1. Let the state space be I = {1, 2, . . . , n}, where n < +∞. Let pi
denotes the prior belief of both DMs regarding the likelihood of state i occurring.
Assume that pi ∈ (0, 1) for all i ∈ I and

∑n
i=1 pi = 1

Let e ∈ Ie = [e, ē] ⊂ R+ be the level of effort/action to be implemented
by the agent. The principal has to determine the desirable level of effort
she demands of the agent. The effort exerted by the agent is assumed to be
verifiable and legally enforceable. In other words, it is a valid contracting
variable. Conditional on e, the outcome is assumed to be a continuous ran-
dom variable x̃ whose state-conditional distributions have common support
Ix = [0, x̄]. In particular, the following assumption holds.

Assumption 2. For each e ∈ Ie and i ∈ I, let Fi(·|e) : Ix → [0, 1] be the condi-
tional cumulative distribution function (cdf) of x̃ defined by

Fi(x|e) = Pr(x̃ ≤ x | e), i ∈ I.

Assume that all the cdfs are C2 on their common support Ix. Let fi(·|e) : Ix → R++

be the conditional probability density function (pdf) associated with Fi(·|e) defined
by

fi(x|e) =
∂Fi(x|e)
∂x

, i ∈ I.

Then
∫
Ix
fi(x|e)dx = 1 for each i ∈ I, and f(x|e) = (fi(x|e))i∈I ∈ Rn

++ for all
x ∈ Ix.

We assume that ambiguous states can be ranked according to the likeli-
hood ratio (LR), as next defined.

4



Assumption 3. For two distinct indexes i, j in I, let `ij(·|e) : Ix → R+ be the
effort-conditional likelihood ratio defined by `ij(x|e) = fi(x|e)

fj(x|e) . Then state i is said

to dominate state j in the sense of likelihood ratio dominance (LRD) if ∂`ij(x|e)
∂x

=
`′ij(x|e) ≥ 0 for a.e. x ∈ Ix, with strict inequality in some subset of positive measure
of Ix.1

Example 1. Suppose n = 2, x̄ = 1 (so that any outcome is viewed as a fraction of the
maximum outcome), and the outcome distribution follows a truncated exponential
distribution with an ambiguous parameter.2 In particular:

fi(x|e) =

{
αi(e)βi(e) exp {−βi(e)x} x ∈ [0, 1], βi(e) > 0, i ∈ {1, 2}
0 o.w.

,

where αi(e) = exp(βi(e))
exp(βi(e))−1

> 1. The likelihood ratio `12(x) is increasing if and only
if

[β2(e)− β1(e)]α1(e)α2(e) exp {−(βi(e) + βj(e))x} ≥ 0

⇐⇒ β2(e)− β1(e) ≥ 0.

Thus an amelioration in the LRD sense is equivalent to a reduction in the parame-
ter of the exponential distribution. In other words, the more favorable state (state
1) is associated with a smaller parameter. At this point, we have not explicitly
specified how effort changes this parameter. In general, this relationship also state-
conditional. One might hypothesize that the higher the level of effort, the smaller the
gap δ(e) = β2(e) − β1(e). Intuitively, this gap represents the severity, or the con-
sequence of ambiguity. Letting δ(e) decrease in e means believing that high efforts
can mitigate the severity of ambiguity.

Next, we hypothesize that in any given state i, raising efforts improves the
outcome distribution in following sense.

Assumption 4. Let the function `i(·) : Ix → R+ be the state conditional likelihood
ratio defined by `i(x) := fi(x|e2)

fi(x|e1)
, e1 < e2 ∈ Ie. Then `′i(x) ≥ 0 a.e. x ∈ Ix, with

strict inequality in some subset of positive measure of Ix.
1Note that LRD is a special case of FSD. Thus Fi(·) dominates Fj(·) in the sense of LRD

implies Fi(x) ≤ Fj(x) for all x ∈ Ix, with strict inequality on some subset of Ix of positive
measure. See Wolfstetter (1999) for further discussion.

2Recall that if X is distributed as an exponential distribution of parameter β, its density
is:

f(x) = β exp{−βx}, x ≥ 0, β > 0.

For our purpose, we need to “redistribute” the mass over a bounded interval Ix, instead
of the whole R+. This conditioning is achieved by dividing the original density by the
cumulative mass contained in this interval, which in this example is F (1) =

∫ 1

0
f(x)dx =

1− exp(−β).
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Assumption 5. The wage is a measurable function w : Ix → R+ satisfying w(x) ∈
[0, x] for a.e. x ∈ Ix.3

Assumption 6. The cost of effort is a C2 function c : Ie → R+ satisfying c(0) = 0,
c′ > 0, c′′ ≥ 0.

We model the DMs’ attitude towards risk by the von Neumann-Morgenstern
utility functions. Recall that the utility function being concave, linear, or con-
vex corresponds to a risk-averse, risk-neutral, or risk-seeking DM, respec-
tively. Typically, the agent is assumed to be risk-averse and the principal
risk-neutral. For greater generality, we allow for the possibility of the princi-
pal being risk-averse.

Assumption 7. The agent has utility function u : R+ → R, which is at least C2,
satisfying u(0) = 0, u′ > 0, u′′ < 0, and the Inada condition limw→0 u

′(w) = +∞.
Similarly, the principal also has a C2 utility function v : R+ → R satisfying v(0) =
0, v′ > 0 and v′′ ≤ 0. If v′′ < 0, then limw→0 v

′(w) = +∞.

To capture the phenomenon known as “ambiguity aversion” postulated
by Ellsberg (1961), we follow the smooth model of Klibanoff et al. (2005). We
refer to this model as KMM (2005) from now on. According to KMM (2005),
attitudes towards ambiguity can be modeled by a functional φJ , which is
referred to as the welfare functional throughout this paper. In particular, the
welfare functional being concave, linear, or convex corresponds to a DM who
is ambiguity-averse, ambiguity-neutral or ambiguity-seeking, respectively.
The DMs are assumed to be either ambiguity-averse or ambiguity-neutral.

Assumption 8. Let the welfare functional be φJ : V → R, where V is the range
of J ’s utility function, for J ∈ {A,P}. For each J ∈ {A,P}, assume that φJ is at
least C2 on its domain, satisfying φ′J > 0 and φ′′J ≤ 0.

Example 2. Following the empirical work of Chakravarty and Roy (2009) and more
recently of Berger and Bosetti (2016), we can let φJ(u) = u1−σ, u ≥ 0 where
σ ∈ [0, 1) represents the degree of relative ambiguity aversion (RAA) and σ = 0
corresponds to J being neutral to ambiguity.

The agent extracts satisfaction from wage and dissatisfaction from exert-
ing efforts (there is no utility coming from work other than that from the
payment). The principal, on the other hand, cares only about profits (out-
comes net of compensation to the agent). Assuming that the cost of effort
and the welfare of the agent are separable, the principal’s problem in ab-
sence of moral hazard is:

3This assumption deviates from the mainstream of the existing literature that considers
a global, rather than a point-wise constraint on w(·). We shall also consider the implication
of this assumption in a separate later section.
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max
w(.),e

n∑
i=1

piφP (

∫ x̄

0

(x− w(x)) fi(x|e)dx)

s.t. (1)

w(x) ∈ [0, x] ∀x ∈ Ix,

e ∈ Ie,
n∑
i=1

piφA

(∫ x̄

0

u(w(x))fi(x|e)dx
)
− c(e) ≥ Ū ,

where Ū ∈ R is the reservation welfare of the agent (representing her outside
option), Ū ≥ φA(0) ≡ φ̄A ∈ R.

2 Formulation of the optimal control problem

In this section, we reformulate the optimization problem of the principal-
agent model in the form of an optimal control problem (OCP) following
Trélat (2008). To this end let the state vector X = (z, y, e) ∈ X = Rn

+×Rn
+× Ie

be defined as follows:

Ẋ =

 ż
ẏ
ė

 =

 v (x− w(x)) f(x|e)
u (w(x)) f(x|e)

0

 , X(0) =

 z(0) = 0
y(0) = 0,

e(0) = e ∈ Ie

 , (2)

where f(x|e) = (fi(x|e))i∈I ∈ Rn
++ and Ie = [e, ē]⊂ R+.

Let M(Ix) = {w : Ix → Ix measurable} be the set of measurable controls,
and U be the set of admissible controls defined by 4

U = {w ∈M(Ix) | w(x) ∈ [0, x] a.e. x ∈ Ix} .

Lemma 1. The set U is compact with respect to the weak-? topology.

Proof. We want to show that every sequence wk in U weak-? converges to
w̄ in U , up to a subsequence. Arguing by contradiction, we suppose that
w̄ /∈ U i.e., there exists a measurable set J ⊂ Ix of positive measure such that
w̄(x) > x for all x ∈ J . Let χJ : Ix → Ix be a characteristic function defined
by

χJ(x) =

{
1 x ∈ J
0 x /∈ J

.

4Specifically, let σI be a σ−algebra on Ix, then(Ix, σI) is a measurable space. The function
w : Ix → Ix is called measurable if, for all I in σI , the preimage of I under w is also in σI
where the preimage of I under w is the set preimw(I) = {x ∈ Ix|w(x) ∈ I}.
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By assumption of weak-? convergence, we have, as k tends to infinity:∫
Ix

χJ(x)wk(x)dx −→
∫
Ix

χJ(x)w̄(x)dx

⇐⇒
∫
Ix

χJ(x)
(
wk(x)− x

)
dx −→

∫
Ix

χJ(x) (w̄(x)− x) dx

⇐⇒
∫
J

(
wk(x)− x

)
dx −→

∫
J

(w̄(x)− x) dx, (3)

which yields a contradiction since the RHS of (3) is strictly positive by hy-
pothesis, while the LHS is negative by construction. Thus there exists no
such set J , implying that w̄ is in U , completing the proof. �

We now proceed to define the OCP. To this end, let the cost functional be:

g(w, e) = −
n∑
i=1

piφP (zi(x̄)), (4)

which is just minus the welfare functional of the principal, and the net wel-
fare functional of the agent be:

h(w, e) =
n∑
i=1

piφA (yi(x̄))− c(e)− Ū. (5)

Under the new notation, the equivalent statement of the original opti-
mization problem (1) is

min
w(·),e

g(w, e)

s.t. (6)

h(w, e) ≥ 0.

We shall refer to this problem as the OCP in the sequel.

Lemma 2. The constraint is active at an optimum.

Proof. If it is not the case and w(·) is optimal, then since φA is continuous,
there exists ε > 0 such that

n∑
i=1

piφA

(∫ x̄

0

u(w(x))fi(x|e)dx− ε
)
− c(e) > Ū

⇐⇒
n∑
i=1

piφA

(∫
Ix

(u(w(x))− ε) fi(x|e)dx
)
− c(e) > Ū.
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Since all the prior densities fi are strictly positive and u(·) is continuous,
there exist a subset K ⊂ Ix of positive measure and some sufficiently small
number εK > 0 satisfying w(x)− εK ≥ 0 for all x ∈ K such that:

n∑
i=1

piφA

(∫
K

u(w(x))− εK)fi(x|e)dx+

∫
Ix\K

u(w(x))fi(x|e)dx
)
≥ c(e) + Ū .

Define the function w̃ : Ix → Ix by w̃(x) =

{
w(x)− εK x ∈ K
w(x) x ∈ Ix \K

. Then

w̃(·) is both admissible and satisfies the constraint by construction. In ad-
dition, since v(·) is also continuous and strictly increasing, and all the prior
densities are strictly positive, we must have∫

K

v(w̃(x))fi(x|e)dx >
∫
K

v(w(x))fi(x|e)dx, ∀i ∈ I. (7)

Finally, since pi > 0 for all i ∈ I and φP (·) is strictly increasing:

n∑
i=1

piφP

(∫
Ix

v(x− w̃(x))fi(x|e)dx
)
>

n∑
i=1

piφP

(∫ x̄

0

(x− w(x)) fi(x|e)dx
)
,

implying that w(·) is not optimal, a contradiction. Hence if w(·) is optimal,
we must have:

n∑
i=1

piφA

(∫ x̄

0

u(w(x))fi(x|e)dx
)
− c(e) = Ū .

�

3 Existence of optimal wage

Remark 1. We discuss briefly the two extreme cases where one of the state variables
might have zero value.

Recall that yi(x̄) =
∫ x̄

0
u(w(x))fi(x|e)dx where fi > 0 for all i ∈ I. Thus, if

there exists i∗ ∈ I such that yi∗(x̄) = 0 then u(w(x)) = 0 for a.e. x ∈ Ix. But this
implies yi(x̄) = 0 for all i ∈ I. Since u is strictly increasing and u(0) = 0, we must
have in this case w(x) = 0 for a.e. x ∈ Ix, which is obviously the wage schedule that
costs the least to the principal. But this wage satisfies the participation constraint
if and only if φ̄A − c(e) ≥ Ū ⇐⇒ c(e) = 0 since Ū ≥ φ̄A by assumption. In
sum, yi(x̄) = 0 for some i ∈ I if and only if c(e) = 0 ⇐⇒ e = 0, which is not
an economically interesting case. If e > 0, uniformly zero wage does not satisfy the
participation constraint and thus is not admissible.

By the same reasoning, zi(x̄) = 0 for some i ∈ I if and only if w(x) = x
for a.e. x ∈ Ix, which in turn implies zi(x̄) = 0 for all i ∈ I. This is the most
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expensive wage to implement for the principal. If this wage satisfies the participation
constraint with strict inequality, then by the same argument made under the proof of
Lemma 2, it is not optimal. On the other hand, if this wage satisfies the participation
constraint with equality, then it is the only admissible candidate for a solution, and
thus is trivially optimal.

Both of these cases are discussed for technical reasons but are not very interesting
economically. For this reason, we shall assume in the sequel that y(x̄) ∈ Rn

++ and
z(x̄) ∈ Rn

++.

LetM0 andM1 be measurable subsets of the state space X defined as

M0 = {0} × {0} × Ie, (8)
M1 = Rn

++ × Sy,e, (9)

where Sy,e = {y ∈ Rn
++ × Ie | −h(w, e) ≤ 0}.

Our objective is to find a trajectory X(·) defined on Ix which solves (2)
and corresponds to an admissible control w ∈ U satisfying

X(0) ∈M0, X(x̄) ∈M1,

such that the cost functional is minimized over all possible trajectories X(·)
linkingM0 toM1.

Proposition 1. The OCP admits an optimal control.

Proof. Let δ = inf(w,e)∈U×Ie g(w, e). Consider a sequence of trajectories {Xk(·)}k∈N
associated with the sequence of admissible controls

{
wk(·)

}
k∈N defined by

Xk(x) =

 zk(x)
yk(x)
ek

 =


(
zki (x)

)
i∈I(

yki (x)
)
i∈I

ek

 , x ∈ Ix, (10)

such that g(wk, ek) −→ δ as k −→∞, where

zki (x) =

∫ x

0

v(t− wk(t))fi(t|ek)dt, ∀i ∈ I,

yki (x) =

∫ x

0

u(wk(t))fi(t|ek)dt, ∀i ∈ I.

By the weak-? compactness of U , the sequence
{
wk(·)

}
k∈N weak-? converges

to w̄(·) ∈ U up to some subsequence, i.e. wk(·) ⇀ w̄(·). By the compactness
of Ie, the sequence {ek}k∈N converges to e∗ ∈ Ie, up to some subsequence.
Denote the limiting trajectory as:

X̄(x) =

 z̄(x)
ȳ(x)
e∗

 =

 (z̄i(x))i∈I
(ȳi(x))i∈I

e∗

 , x ∈ Ix (11)
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where

z̄i(x) =

∫ x

0

v(t− w̄(t))fi(t|e∗)dt, i ∈ I,

ȳi(x) =

∫ x

0

u(w̄(t))fi(t|e∗)dt, i ∈ I.

We first show that this limiting trajectory also brings the system fromM0 to
M1, which is completed by Lemma 3. Second, we show that the control as-
sociated with this limiting trajectory is optimal, which is the result of Lemma
4.

Lemma 3. We have h(w̄, e∗) ≥ 0.

Proof. By construction, h(wk, ek) ≡
∑n

i=1 piφA(yki (x̄)) − c(ek) − Ū ≥ 0 for all
k ∈ N. For i ∈ I and k ≥ 0, let us write

yki (x̄) =

∫ x̄

0

u(wk(t))fi(t|e∗)dt+ ∆k
i , (12)

where ∆k
i =

∫ x̄
0
u(wk(t))

(
fi(t|ek)− fi(t|e∗)

)
dt. It is immediate to see that ∆k

i

tends to zero as k tends to infinity since u is bounded and fi defined on the
compact set Ix × Ie is uniformly continuous.

From Lee and Markus (1967), we have, for a convex function Γi:∫
Ix

Γi(w̄(x))dx ≤ lim inf

∫
Ix

Γ(wk(x))dx. (13)

Let Γi(w
k(x)) ≡ −u(wk(x))fi(x|e∗). Then Γi is convex with respect to wk since

u is concave and fi is positive and does not depend on wk 5. We can rewrite
(13) as:

−ȳi(x̄) ≤ lim inf(−yki (x̄)−∆k
i )

⇐⇒ ȳi(x̄) ≥ lim sup yki (x̄). (14)

By the continuity of ȳi, for all ε > 0, there exists a sufficiently large positive
integer k such that ȳi(x̄) ≥ yki (x̄)− ε. Since φA is increasing,

φA(ȳi(x̄)) ≥ φA(yki (x̄)− ε). (15)

By the first fundamental theorem of calculus,

φA
(
yki (x̄)

)
− φA

(
yki (x̄)− ε

)
=

∫ b

a

φ′A(ζ)dζ,

5In particular, let w1, w2 be arbitrary functions in U . For any α ∈ [0, 1], we have by the
concavity of u that u(αw1(x) + (1 − α)w2(x)) ≥ αu(w1(x)) + (1 − α)u(w2(x)). Multiplying
both sides of the inequality by fi(x|ek) which is positive and does not depend on w, we see
that u(w(x))fi(x|ek) is concave.
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where b = yki (x̄) and a = b − ε. Let M ∈ R+ be an upper bound of φ′A over
[a, b]. Then φA

(
yki (x̄)

)
− φA

(
yki (x̄)− ε

)
≤ M(b − a) = Mε, implying that

φA
(
yki (x̄)− ε

)
≥ φA

(
yki (x̄)

)
−Mε, which together with (15) implies

φA(ȳi(x̄)) ≥ φA
(
yki (x̄)

)
−Mε

=⇒
n∑
i=1

piφA(ȳi(x̄)) ≥
n∑
i=1

piφA
(
yki (x̄)

)
−Mε. (16)

Since φA(yki (x)) ≥ c(ek) + Ū ≥ c(e∗) + Ū − ε for k large enough, from (16) we
have

∑n
i=1 piφA(ȳi(x̄)) ≥ c(e∗) + Ū − (M + 1)ε. Finally, since ε was arbitrary,

letting ε→ 0 yields
n∑
i=1

piφA(ȳi(x̄)) ≥ c(e∗) + Ū,

or equivalently, h(w̄, e∗) ≥ 0. �

Next, we show that the sequence of welfare functional associated with{
wk(·)

}
k

converges to the minimal cost.

Lemma 4. Let
{
g(wk, ek)

}
k∈N be the sequence of cost functional defined by

g(wk, ek) = −
n∑
i=1

piφP
(
zki (x̄)

)
, k ∈ N,

and let the cost at the limiting control w̄ be

g(w̄, e∗) = −
n∑
i=1

piφP (z̄i(x̄)) .

Then w̄ is optimal, i.e., g(w̄, e∗) ≤ δ.

Proof. For i ∈ I and k ≥ 0, we write

zki (x̄) =

∫ x̄

0

v(t− wk(t))fi(t|e∗)dt+ νki , (17)

where νki =
∫ x̄

0
v(t − wk(t))

(
fi(t|ek)− fi(t|e∗)

)
dt. It is immediate to see that

νki tends to zero as k tends to infinity since v is bounded and fi defined on
the compact set Ix × Ie is uniformly continuous.

We then invoke the same argument as in the proof of Lemma 3 for the
convex function Γi ≡ v(x − w(x))fi(x|e), for each i ∈ I. Let M ∈ R+ be an
upper bound for φ′P , then for sufficiently large k ∈ N and sufficiently small
ε > 0,

g(w̄, e∗) ≤ −
n∑
i=1

piφP
(
zki (x̄)

)
+Mε,
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which is the analogy of (16) in this case. Again, letting ε→ 0 yields:

g(w̄, e∗) ≤ −
n∑
i=1

piφP
(
zki (x̄)

)
, (18)

implying that g(w̄, e∗) is a lower bound for−
∑n

i=1 piφP
(
zki (x̄)

)
. Thus g(w̄, e∗) ≤

δ by the definition of the infimum. �

To sum up, we have proved that the limiting trajectory satisfies the con-
straint, hence it brings the system fromM0 toM1. Moreover, the cost achieved
by this trajectory is the minimum cost. Thus the limiting control w̄ is an op-
timal control. �

4 Characterization of the optimal wage

We employ the Pontryagin Maximum Principle (PMP) to characterize the
necessary conditions that must be satisfied by a solution to the OCP, which
has been shown to exist in Proposition 1. With a slight modification from
Trélat (2008), the statement of the PMP applied to this problem is the follow-
ing.

Theorem 5. [Pontryagin Maximum Principle] Suppose (X,w) is a solution to
the OCP. There exists an absolutely continuous vector-valued function λ : Ix →
R2n+1 and a real number λ0 ∈ {0, 1} with (λ, λ0) 6= 0 ∈ R2n+2 such that:

1. λ satisfies the canonical equations

Ẋ(x) = ∇λH (X(x), w(x), λ(x), λ0, x) , (19)
λ̇(x) = −∇XH(X(x), w(x), λ(x), λ0, x), (20)

for almost every x ∈ Ix, where the real-valued function H : R2n+1 × R ×
R2n+1 × R × R → R, called the Hamiltonian associated with the OCP is
defined by:

H(X,λ, λ0, ω, x) = v(x− ω) 〈λz, f(x|e)〉+ u(ω) 〈λy, f(x|e)〉 , (21)

where λ = (λz, λy, λe)
T ∈ R2n+1 is called the adjoint vector whose compo-

nents λz ∈ Rn, λy ∈ Rn and λe ∈ R themselves are the adjoint vectors
associated with the state variables z, y and e respectively.

2. The maximum condition

H (X(x), w(x), λ(x), λ0, x) = max
ω∈[0,x]

H (X(x), ω, λ(x), λ0, x) (22)

is satisfied for almost every x ∈ Ix.
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3. The transversality conditions (TCs)

λ(0) ∈ NM0(X(0)), (23)
−λ0∇Xg(x̄, X(x̄))− λ(x̄) ∈ NM1(X(x̄)) (24)

are satisfied, whereM0 andM1 are respectively defined by (8) and (9), and
NMi

(X(x)) denotes the normal cone toMi at X(x), i ∈ {0, 1}.

We start by computing the normal cones toM0 andM1.
First, considerNM0(X(0)). Recall thatX(0) = (0, 0, e). Let ξ = (ξz, ξy, ξe) ∈

Rn × Rn × R. Take an element M0 ∈ M0, then M0 = (0, 0, a) ∈ Rn × Rn × Ie.
The normal cone toM0 at X(0) can be written as:

NM0(X(0)) =
{
ξ ∈ R2n+1 | 〈ξ,M0 −X(0)〉 ≤ 0, ∀M0 ∈M0

}
=⇒ NM0(X(0)) =

{
ξ ∈ R2n+1 | ξe(a− e) ≤ 0, ∀a ∈ Ie

}
.

One of the following scenarios can occur.

• If e ∈ (e, ē), then ξe = 0 since ξe(a − e) ≤ 0 must be satisfied for any
a ∈ Ie. Thus the normal cone is:

NM0(X(0)) = Rn × Rn × {0}. (25)

• If e = e then ξe(a− e) ≤ 0 if and only if ξe ≤ 0 since a ≥ e for all a ∈ Ie.
Thus the normal cone is

NM0(X(0)) = Rn × Rn × R−. (26)

• If e = ē then ξe(a− ē) ≤ 0 if and only if ξe ≥ 0 since a ≤ ē for all a ∈ Ie.
Thus the normal cone in this case is

NM0(X(0)) = Rn × Rn × R+. (27)

Next, consider NM1(X(x̄)). Recall that X(x̄) = (z(x̄), y(x̄), e). Thanks to
Lemma 2, we know from Clarke (1990) that the normal cone NM1(X(x̄)) can
be written as:

NM1(X(x̄)) = −µh∇Xh(w, e) + µe∇X(e− e) + µē∇X(e− ē), (28)

for some µh ≥ 0 and µe = (µe, µē) ∈ R2
+ satisfying the complementary slack-

ness conditions:

µe(e− e) ≡ µe(e− e) = 0, µe ≥ 0, (29)
µē(e− ē) ≡ µē(e− ē) = 0, µē ≥ 0. (30)

Simplification of (28) yields:

NM1(X(x̄)) =

 0
−µh∇yh(w, e)

−µh∇eh(w, e)− µe + µē

 . (31)
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Lemma 6. If e ∈ (e, ē), then λe(0) = 0. If e = e, then λe(0) ≤ 0. If e = ē, then
λe(0) ≥ 0.

Proof. The proof follows directly from condition 23 applied to different forms
of NM0(X(0)) depending on where e takes values as previously computed.
In particular:

• If e ∈ (e, ē), then the normal cone takes the form 25, implying λe(0) = 0;

• If e = e, then the normal cone takes the form 26, implying λe(0) ≤ 0;

• If e = ē, the normal cone takes the form 27, implying λe(0) ≥ 0.

�

Proposition 2. The adjoint vector to e satisfies

λe(0) = 2

(〈
λz,

∂z(x̄)

∂e

〉
+

〈
λy,

∂y(x̄)

∂e

〉)
− µhc′(e) + µe − µē. (32)

Moreover, when e is interior,

2

(〈
λz,

∂z(x̄)

∂e

〉
+

〈
λy,

∂y(x̄)

∂e

〉)
= µhc

′(e). (33)

Proof. Note that (20) implies

λ̇(x) =

 λ̇z(x)

λ̇y(x)

λ̇e(x)

 =

 0
0

−v(x− w(x))
〈
λz,

∂f(x|e)
∂e

〉
− u(w(x))

〈
λy,

∂f(x|e)
∂e

〉
 ,

(34)
for a.e. x ∈ Ix. Hence λz(x) = λz = cons and λy(x) = λz = cons for all x ∈ Ix.
Morever, in view of (31), condition (24) is equivalent to: λz(x̄)

λy(x̄)
λe(x̄)

 =

 −λ0∇zg(w, e)
µh∇yh(w, e)

−λ0∇eg(w, e) + µh∇eh(w, e)− µē + µe

 . (35)

Thus

λz = λ0 (piφ
′
P (zi(x̄)))i∈I , (36)

λy = µh (piφ
′
A(yi(x̄)))i∈I , (37)

λe(x̄) = λ0

n∑
i=1

piφ
′
P (zi(x̄))

∂zi(x̄)

∂e
+ µh

(
n∑
i=1

piφ
′
A(yi(x̄))

∂yi(x̄)

∂e
− c′(e)

)
(38)

− µē + µe.
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Substituting (36) and (37) into (38) yields a more compact expression for
λe(x̄). In particular,

λe(x̄) =

〈
λz,

∂z(x̄)

∂e

〉
+

〈
λy,

∂y(x̄)

∂e

〉
− µhc′(e)− µē + µe. (39)

To ease on notation, define

Z(e) =

∫
Ix

v(x− w(x)) 〈λz, f(x|e)〉 dx,

Y (e) =

∫
Ix

u(w(x)) 〈λy, f(x|e)〉 dx.

Then from (34), ∫
Ix

λ̇e(x)dx = − (Z(e) + Y (e)) .

Observe that:

Y (e) =
∂

∂e

(∫
Ix

〈λy, ż(x)〉 dx
)

=

〈
λy,

∂

∂e

(∫
Ix

ż(x)dx

)〉

=⇒ Y (e) =

〈
λy,

∂y(x̄)

∂e

〉
. (40)

Analogously,

Z(e) =

〈
λz,

∂z(x̄)

∂e

〉
. (41)

Plugging (39), (40) and (41) into λe(0) = λe(x̄)−
∫
Ix
λ̇e(x), we arrive at (32).

To show the remaining part of the proposition, note that if e ∈ (e, ē),
then µe = µē = 0 by the complementary slackness conditions (29) and (30).
Moreover, in this case λe(0) = 0 by Lemma 6. Plugging these additional
pieces of information into (32) yields (33). �

Lemma 7. The non-triviality condition (λ0, µh) 6= 0 ∈ R2
+ holds.

Proof. Suppose by contradiction that λ0 = µh = 0, then from (37) and (36)
we have λz = λy = 0, which via (34) implies that λ̇e(x) = 0. Hence λe(x) =
λe = cons for all x ∈ Ix. In view of (32) we have λe = µe − µē. Consider the
following cases.

• If e ∈ (e, ē), then λe = 0, violating (λ, λ0) 6= 0.

• If e = e, then the complementary slackness condition (30) implies λe =
µe. If µe = 0, then again (λ, λ0) 6= 0 is violated. If µe > 0, then Lemma 6
is contradicted.
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• If e = ē, then the complementary slackness condition (29) implies λe =
−µē ≤ 0. Thus the only admissible value for µē in this case is zero,
violating (λ, λ0) 6= 0.

We see that regardless of the value of e, a contradiction follows if λ0 = µh = 0.
Hence we always have (λ0, µh) 6= 0. �

Lemma 8. The adjoint vectors λz and λy satisfies (λz, λy) ∈ R2n
++.

Proof. In light of Lemma 7, we only need to consider the following cases.

1. If µh = 0, λ0 = 1, then

λz = (piφ
′
P (zi(x̄)))i∈I ,

λy = 0.

By Assumption 1 and Assumption 8, we have λz ∈ Rn
++. But this im-

plies ∂H
∂ω

= −v′(x − ω) 〈λz, f(x|e)〉 < 0 for all ω ∈ [0, x], since v′ > 0 by
Assumption 7 and f(x|e) ∈ Rn

++ by Assumption 2. Thus in this case
w(x) = 0 for all x ∈ Ix, which is ruled out in light of Remark 1.

2. If µh > 0, λ0 = 0, then

λz = 0,

λy = µh (piφ
′
A(yi(x̄)))i∈I ,

implying ∂H
∂ω

= u′(ω) 〈λy, f(x|e)〉 > 0 for all ω ∈ [0, x] by the same
argument as in the previous case. Thus w(x) = x for all x ∈ Ix. This
case is also ruled out in light of Remark 1.

3. If µh > 0, λ0 = 1, then

λz = (piφ
′
P (zi(x̄)))i∈I ,

λy = µh (piφ
′
A(yi(x̄)))i∈I .

We conclude that only (µh > 0, λ0 = 1) can occur under the standing as-
sumptions. In this case (λz, λy) ∈ R2n

++ by assumptions on the priors and the
welfare functional. �

Lemma 9. The Hamiltonian is strictly concave in ω.

Proof. From (21), we have for each fixed x ∈ (0, x̄]

∂H

∂ω
= −v′(x− ω) 〈λz, f(x|e)〉+ u′(ω) 〈λy, f(x|e)〉 , ω ∈ (0, x), (42)

and
∂2H

∂ω2
= v′′(x− ω) 〈λz, f(x|e)〉+ u′′(ω) 〈λy, f(x|e)〉 . (43)
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By Lemma 8 and Assumption 2, we have 〈λz, f(x|e)〉 > 0 and 〈λy, f(x|e)〉 >
0. In addition, we also have u′′ < 0 and v′′ ≤ 0 by Assumption 7. Hence
v′′(x− ω) 〈λz, f(x|e)〉 ≤ 0 and u′′(ω) 〈λy, f(x|e)〉 < 0, implying ∂2H

∂ω2 < 0 for all
ω ∈ (0, x). �

Theorem 10. Define

G(x|e) =
〈λy, f(x|e)〉
〈λz, f(x|e)〉

, x ∈ Ix. (44)

then the following holds for an optimal wage function.

1. If the principal is risk-averse, then the optimal wage function takes the form

w(x) = Ξx (G(x|e)) , x ∈ (0, x̄], (45)

where Ξx : R++ → (0, x) is the inverse mapping of ω 7→ v′(x−ω)
u′(ω)

. Moreover,
the optimal wage is non decreasing in outcomes.

2. If the principal is risk-neutral, then there exist x0 ∈ (0, x̄) such that an optimal
wage function takes the form{

w(x) = x x ≤ x0 or x ∈ (x0, x̄) \ J,
w(x) = Ξ (G(x|e)) x ∈ J,

(46)

where Ξ : R++ → (0, x) is the inverse mapping of ω 7→ 1
u′(ω)

and the set J is the
countable union of open intervals defined by

J = {x ∈ (x0, x̄) | u′(x)(G(x|e) < 1}. (47)

In particular, an optimal wage is differentiable on (0, x̄) except at an at most count-
able set of points.

Moreover, x0 is the smallest x ∈ (0, x̄) such that u′(x)(G(x|e) = 1 and there
exists a decreasing sequence (xl)l≥1 converging to x0 with u′(xl)(G(xl|e) < 1 for
l ≥ 1.

An optimal effort satisfies h(w, e) = 0, i.e.,

n∑
i=1

pi (φA(yi(x̄)))− c(e) = Ū,

where the optimal state vector (yi(x̄))i∈I is evaluated at the optimal wage in each
case. Moreover, either an optimal effort is not interior (and then belongs to {e, ē})
or it is interior and satisfies (33).

Proof. Notice that w(x) = 0 cannot occur for any x ∈ Ix since the Inada
condition on u implies ∂H

∂ω
|ω=0 = +∞, regardless of the principal’s attitude

towards risk.
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1. When the principal is risk-averse, the Inada condition on v(·) implies
that w(x) = x cannot occur for any x since ∂H

∂ω
|ω=x = −∞. Thus the

optimal wage satisfies ∂H
∂ω
|ω=w(x) = 0, or

v′(x− w(x))

u′(w(x))
= G(x|e). (48)

Note that since v′′ ≤ 0 and u′ > 0,

−v′′(x− ω)u′(ω)− v′(x− ω)u′′(ω)

[u′(ω)]2
> 0 (49)

for any fixed x, implying that the mapping ω 7→ v′(x−ω)
u′(ω)

is strictly in-
creasing. Thus it has an inverse mapping Ξx, also strictly increasing,
such that for each x ∈ (0, x̄], the optimal wage is uniquely defined by

w(x) = Ξx (G(x|e)) , x ∈ (0, x̄]. (50)

One deduces from the assumptions that w(·) is differentiable on its do-
main. Let G′(x|e) = ∂G(x|e)

∂x
, we have

w′(x) = Ξ′x(G(x|e))G′(x|e), (51)

where Ξ′x > 0 since Ξx is a strictly increasing map, implying that w′(x)
has the same sign as G′(x|e). Furthermore, differentiating both sides of
(48) with respect to x and simplifying yield

w′(x) =
rv(x− w(x)) + G′(x|e)

G(x|e)

rv(x− w(x)) + ru(w(x))
, (52)

where rv(·) = −v′′(·)
v′(·) > 0 and ru(·) = −u′′(·)

u′(·) > 0 denote the degree of the
absolute risk aversion of the principal and the agent, respectively. Ob-
serve that G(x|e) = 〈λy ,f(x|e)〉

〈λz ,f(x|e)〉 is bounded above and below by positive
constants since all the elements of the adjoint vectors are positive and
finite, and the densities are positive and bounded. Since w(x) ∈ (0, x)
for all x ∈ (0, x̄], there exists x1 > 0 such that w′(x1) > 0, otherwise
w(x) ≤ 0 for all x ∈ Ix since w(0) = 0, which is either inadmissible, or
ruled out by a previous remark. From (51) we have G′(x1|e) > 0. We
would like to show that G′(x|e) ≥ 0 for all x ∈ Ix. Suppose by contra-
diction, there exists x2 ∈ (0, x̄] such that G′(x2|e) < 0. By the continuity
of G′(·|e), there exists x3 ∈ (0, x̄] such that G′(x3|e) = 0, which, via (51)
implies w′(x3) = 0. But G′(x3|e) = 0 and w′(x3) = 0 imply rv(·) = 0 in
light of (52), a contradiction. Hence we must have G′(x|e) ≥ 0 for all
x ∈ Ix, implying via (51) that w′(x) ≥ 0 for all x ∈ Ix.
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2. When the principal is risk-neutral, v′ ≡ 1. Equation (42) reads

∂H

∂ω
= 〈λz, f(x|e)〉 (u′(ω)G(x|e)− 1), (53)

and by strict convexity of the Hamiltonian, one gets that, for x ∈ (0, x̄),
the latter reaches its maximum at ω = x if and only if u′(x)G(x|e) ≥ 1.

By the Inada condition on u, one deduces at once w(x) = x for x small
enough. Let x0 be the largest x ∈ Ix such that w(x) = x on [0, x0]. First
notice that x0 < x̄, otherwise w(x) = x on Ix, which is ruled out by a
previous remark. We claim that u′(x0)G(x0|e) = 1. Indeed, one clearly
has that u′(x)G(x|e) ≥ 1 for x < x0 and therefore u′(x0)G(x0|e) ≥ 1.
Furthermore by maximality of x0, there exists a decreasing sequence
(xl)l≥1 tending to x0 such that w(xl) < xl for l ≥ 1, i.e., u′(xl)G(xl|e) < 1,
yielding, as l tends to infinity that u′(x0)G(x0|e) ≤ 1. Hence the claim
and, as a byproduct, the characterization of x0. Let the subset J of
(x0, x̄) defined in (47). Since u′(·)G(·|e) is continuous, J is the countable
union of open intervals on which the optimal wage w(x) is defined by
∂H
∂ω
|ω=w(x) = 0, i.e., by risk-neutrality of the principal, yields

1

u′(w(x))
= G(x|e), x ∈ J. (54)

Since ω 7→ 1
u′(ω)

is strictly increasing by the strict concavity of u, the

inverse mapping Ξ ≡
(

1
u′

)−1 is well-defined. Inverting both sides of
(54), we arrive at the desired expression for w(x). This completes the
proof.

�

Remark 2. One may wonder about the uniqueness of the solution. Clearly, a solu-
tion is determined by the triple (µh, x0, e). In the case where e is not interior, we have
two unknowns and two equations: one from the equality constraint h(w, e) = 0, and
the other from the characterization of x0 provided by the theorem, i.e., the study of the
solution to equation u′(x)G(x|e) = 0. In the case where e is interior, we have an ex-
tra equation, namely (33). However, it seems difficult to determine all the solutions
analytically.

Remark 3. With reasonable assumptions on the data of the problem, such as real-
analyticity, one can conclude that there is a finite number of solutions to u′(x)G(x|e) =
1 on (0, x̄] and then J is made of a finite number of open intervals. Furthermore,
notice that on (0, x̄], one has that (u′G)′ = u′′G+ u′G′ = u′(G

′

G
− ru). One deduces

that if G
′

G
≤ ru then J = (x0, x̄) and x0 is the unique solution to u′(x)G(x|e) = 1.

When both DMs are ambiguity-neutral, we recover the result that is most
analogous to the straight deductible result of Raviv (1979) in the context of
insurance.
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Corollary 1. [Raviv (1979)] When both DMs are ambiguity-neutral and the prin-
cipal is risk-neutral, the shape of the optimal contract is the following{

w(x) = x x ∈ (0, x0]

w(x) = x0 ∈ (0, x) x ∈ (x0, x̄]
,

where x0 is uniquely defined by u′(x0) = 1
µh

.

Proof. When both DMs are ambiguity-neutral,

G(x|e) =
µh 〈p, f(x|e)〉
〈p, f(x|e)〉

= µh, (55)

where p ≡ (p1, . . . , pn) is the vector of priors.
According to Remark 3, x0 is the unique solution to

u′(x0)µh − 1 = 0. (56)

By the monotonicity of u′, for all x ≤ x0 we have u′(x)µh − 1 ≥ 0, implying
that w(x) = x for all x ≤ x0 and then for all x > x0 we have u′(x)µh − 1 < 0,
implying that w(x) = x0 for all x > x0. �

Remark 4. Observe that the sharing rule (48) characterizes both efficient risk and
ambiguity-sharing. It has a nice interpretation. The LHS of this equation is the
relative marginal utilities, while the RHS is relative expected marginal welfare. The
expectation is computed with respect to the posterior distribution. To see this, define
the expected marginal welfare of the agent and the principal, respectively, be:

A(x|e) =

∑n
i=1 piφ

′
A(yi(x̄))fi(x|e)∑n

i=1 pifi(x|e)
≡

n∑
i=1

pi(x|e)φ′A(yi(x̄)), (57)

P (x|e) =

∑n
i=1 piφ

′
P (zi(x̄))fi(x|e)∑n

i=1 pifi(x|e)
≡

n∑
i=1

pi(x|e)φ′P (zi(x̄)). (58)

where pi(x|e) = pifi(x|e)∑n
i=1 pifi(x|e)

is the probability that state i occurs given that the out-
come is x, which is by definition the Bayesian posterior probability. This “inference”
that each contracting party has to make here is a direct consequence of the uncer-
tainty on the distribution and that the state itself is not a contractible variable. Then
(48) is equivalent to

v′(x− w(x))P (x|e)
u′(w(x))A(x|e)

= µh, (59)

which tells us that at the optimum, the ratio between the product of marginal utility
and expected marginal welfare of the agent and that of the principal is equalized
across all levels of outcomes where optimal wage has an interior value. Notice that
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under ambiguity neutrality of both DMs, A(x|e)
P (x|e) = cons ≡ 1 and (59) reduces to the

famous Borch rule
v′(x− w(x))

u′(w(x))
= µh, (60)

according to Borch (1960). Hence (59) can be viewed as a modified Borch rule that
an optimal contract has to satisfy under ambiguity.

Remark 5. To clarify the notion of Bayesian inference mentioned above, consider a
situation where the states are contractible variables, i.e., when the contract can be
written as {wi(·), e}i∈I instead of {w(·), e}. In this case, we can slightly modify the
state variables as

z(x) = (v(x− wi(x))fi(x|e))i∈I ,
y(x) = (u(wi(x))fi(x|e))i∈I ,

and and easily show that the sharing rule (59) holds for every state. In particular,

v′(x− wi(x))φ′P (zi(x̄))

u′(wi(x))φ′A(yi(x̄))
= µh, ∀x ∈ Ix, i ∈ I, (61)

implying that the state-conditional ratio of marginal utilities v′(x−wi(x))
u′(wi(x))

is held con-
stant across all x ∈ Ix, in each state i ∈ I. Hence (61) can be viewed as a state-
conditional Borch rule. Observe that the DMs no longer have to make an inference
on the state based on the outcome as suggested by (48). Furthermore, when the
principal is neutral to risk and ambiguity,

u′(wi(x))φ′A(yi(x̄)) = µh, ∀i ∈ I, (62)

implying that wi(x) = cons ≡ w̄i ∈ (0, x̄) for all x satisfying wi(x) ∈ (0, x). In
view of Corollary 1, the optimal wage function under risk and ambiguity-neutral
principal when the states are contractible has the form:{

wi(x) = x x ∈ (0, w̄i],

wi(x) = w̄i x ∈ (w̄i, x̄],
i ∈ I, (63)

where w̄i is the unique solution to Ki(x) = 0 where Ki(x) = u′(x)φ′A(yi(x̄))µh− 1.
Observe that if yi(x̄) =

∫ w̄i
0
u(x)fi(x|e)dx+ (1− Fi(w̄i))u(w̄i), then

∂yi(x̄)

∂w̄i
= u′(w̄i)(1− F (w̄i)) > 0 (64)

by Leibniz’s integral rule. Thus the LHS of (62) is strictly decreasing in w̄i by the
strict concavity of u(·) and φA(·). Hence in optimality w̄i = w̄j ≡ w̄ for all i, j ∈ I,
further simplifying (63) to{

wi(x) = x x ∈ (0, w̄],

wi(x) = w̄ x ∈ (w̄, x̄],
∀i ∈ I. (65)
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Observe that the contract (63) is robust to the principal’s ambiguity atti-
tude. When the principal is ambiguity-averse, we simply modify Ki(x) =

u′(x)
φ′A(yi(x̄))

φ′P (zi(x̄))
µh − 1, which is also strictly decreasing in x. Hence, if the states

are contractible (markets are complete), we conclude from (65) and Corol-
lary 1 that the shape of the optimal contract is robust to ambiguity when the
principal is risk-neutral.

5 Binary ambiguous state case with risk-neutral
principal

Under a risk-averse principal, we have shown in Theorem 10 that G′ is al-
ways non negative, regardless of the number of ambiguous states and, since
the sign of G′ determines the sign of w′, an optimal wage was always non
decreasing.

For n = 2, we prove in the next lemma that G′ has a constant sign a
hence deduces some information on the sign of an optimal wage under a
risk-neutral principal.

Lemma 11. Under Assumption 3, in the binary state case n = 2, the sign ofG′(x|e)
does not depend on x ∈ Ix. As a consequence, the following holds: either G′ ≤ 0,
in which case x0 is the unique solution of u′(x)G(x|e) = 1 and J defined in (47) is
equal to (x0, x̄); or G′ > 0, in which case an optimal wage is non decreasing.

Proof. Denote λz = (λ1
z, . . . , λ

n
z ) and λy = (λ1

y, . . . , λ
n
y ). Then G′(x|e) can be

expressed as:

G′(x|e) =

∑
1≤i<j≤n(λiyλ

j
z − λjyλiz)f 2

j(x|e)`′ij(x|e)
(
∑n

i=1 λ
i
zfi(x))

2 . (66)

Hence for n = 2

G′(x|e) =

(
λ1
yλ

2
z − λ2

yλ
1
z

)
[f2(x|e)]2 `′12(x|e)(∑2

i=1 λ
i
zfi(x|e)

)2 ,

where `′12(x) ≥ 0 by Assumption 3. Clearly, the sign of G′(x|e) depends on
the sign of λ1

yλ
2
z − λ2

yλ
1
z, which is independent of x. Combining that result

with Theorem 10 yields the rest of the statement of the lemma. �

Remark 6. Denote A′(x|e) = ∂A(x|e)
∂x

and P ′(x|e) = ∂P (x|e)
∂x

. We have

A′(x|e) =

∑
1≤i<j≤n pipj (φ′A(yi(x̄))− φ′A(yj(x̄))) f 2

j (x|e)`′ij(x|e)
〈p, f(x|e)〉2

, (67)

P ′(x|e) =

∑
1≤i<j≤n pipj (φ′P (zi(x̄))− φ′P (zj(x̄))) f 2

j (x|e)`′ij(x|e)
〈p, f(x|e)〉2

, (68)
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where `′ij(x|e) ≥ 0 by Assumption 3 and pipj > 0 for all i, j ∈ I by Assumption 1.
Hence again in the binary state case the signs ofA′(x|e) and P ′(x|e) are independent
of x.

Lemma 12. In the binary state case, A′(x|e) ≤ 0 and P ′(x|e) ≤ 0 for all x ∈ Ix.

Proof. Note that by integration by parts (IBP), we always have

y1(x̄) = u(w(x̄))−
∫ x̄

0

u′(w(x))w′(x)F1(x|e)dx, (69)

z1(x̄) = (x̄− w(x̄))−
∫ x̄

0

(1− w′(x))F1(x|e)dx. (70)

Hence

y1(x̄)− y2(x̄) =

∫ x̄

0

u′(w(x))w′(x) [F2(x)− F1(x)] dx, (71)

and

z1(x̄)− z2(x̄) =

∫ x̄

0

(1− w′(x)) [F2(x|e)− F1(x|e)] dx. (72)

Recall that when n = 2, by Lemma 11 the sign of G′(x|e) is constant with
respect to x. Suppose G′(x|e) ≥ 0, then (51) implies w′(x) ≥ 0 for x ∈
(x0, x̄) (and thus for all x ∈ Ix). Thus y1(x̄) ≥ y2(x̄) by (71) since u′ > 0,
w′ ≥ 0 and F2(x) ≥ F1(x) ≥ 0 for all x ∈ Ix by Assumption 3. Hence
φ′A(y1(x̄)) − φ′A(y2(x̄)) ≤ 0 by the concavity of φA, implying A′(x|e) ≤ 0 in
light of (67). Moreover since G(x|e) = µh

A(x|e)
P (x|e) , differentiating with respect to

x and simplifying yield:

G′(x|e)
G(x|e)

=
A′(x|e)
A(x|e)

− P ′(x|e)
P (x|e)

(73)

⇐⇒ P ′(x|e)
P (x|e)

=
A′(x|e)
A(x|e)

− G′(x|e)
G(x|e)

, (74)

implying P ′(x|e) ≤ 0 since A′(x|e) ≤ 0 and G′(x|e) ≥ 0.
Consider next the case G′(x|e) < 0, again from (51) we have w′(x) < 0

for x ∈ (x0, x̄). Thus w′(x) ≤ 1 for all x ∈ Ix, and we have from (72) that
z1(x̄) ≥ z2(x̄). Hence P ′(x|e) ≤ 0 in light of (68). On the other hand (73)
implies A′(x|e)

A(x|e) = G′(x|e)
G(x|e) + P ′(x|e)

P (x|e) < 0 since G′(x|e) < 0 and P ′(x|e) ≤ 0. Thus
A′(x|e) < 0.

We conclude that regardless of the sign of G′(x|e), when n = 2 we always
have P ′(x|e) ≤ 0 and A′(x|e) ≤ 0 for all x ∈ Ix. �

Remark 7. As a direct consequence of Lemma 12, in the binary state case, we always
have y1(x̄) ≥ y2(x̄) and z1(x̄) ≥ z2(x̄).
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Example 3. Consider the binary state case with power welfare function φJ(U) =
U1−σJ , where σJ ∈ [0, 1) is the degree of relative ambiguity aversion of decision
maker J , where J ∈ {A,P}. Define ŷ = y1(x̄)

y2(x̄)
and ẑ = z1(x̄)

z2(x̄)
. Then ŷ ≥ 1 and ẑ ≥ 1

by the remark above. Note that λ1
yλ

2
z − λ2

yλ
1
z = p1p2µhS(σP , σA), where

S(σP , σA) = φ′A(y1(x̄))φ′P (z2(x̄))− φ′A(y2(x̄))φ′P (z1(x̄)).

Thus S(σP , σA) bears the same sign as G′(x|e). Upon simplification we have

S(σP , σA) = (1− σA)(1− σP )
1

y2z1

(
ẑσP

ŷσA
− 1

)
.

Clearly, the sign of S(σP , σA) depends on the sign of ẑσP
ŷσA
− 1. Taking σP = 0, the

sign of S(σP , σA) is simply that of 1− ŷσA which can be made negative. By contrast,
if σA = 0, the sign of S(σP , σA) is that of ẑσP − 1 which can be made positive. In
other words, G′ can take both signs in the binary case and its sign depends crucially
on the degree of ambiguity aversion.

Definition 1. For lack of better terminologies, we say that the ambiguity-aversion
effect of the agent dominates that of the principal if

G′(x|e) ≤ 0, ∀x, (75)

and vice versa. We say that the two ambiguity - aversion effects offset each other if
the above holds with equality.

Remark 8. In the binary state case, (75) is independent of x and in light of Example
3 is more likely to hold the more ambiguity-averse the agent and the less ambiguity-
averse the principal.

Remark 9. When (75) holds and under the principal’s risk-neutrality and the agent’s
ambiguity dominance assumptions, x0 is uniquely defined by equation u′(x)(G(x|e) =
1 and an optimal contract (46) can be fully characterized by{

w(x) = x x ∈ (0, x0],

w(x) = Ξ (G(x|e)) x ∈ (x0, x̄],
(76)

where Ξ : R++ → (0, x) is the inverse mapping of ω 7→ 1
u′(ω)

.

Proposition 3. In the binary state case, when the principal is ambiguity neutral,
the variation in optimal wage whenever w(x) ∈ (0, x) is the following.

1. If both DMs are ambiguity -averse, optimal wage is non decreasing in out-
comes on [x0, x̄] if and only if the ambiguity-aversion effect of the principal
dominates that of the agent;
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2. If the principal is ambiguity-neutral and the agent is ambiguity-averse, opti-
mal wage is non increasing in outcomes. Moreover, optimal wage is constant
if and only if ambiguity has a one-sided structure, i.e., either ambiguity is con-
centrated only outcomes beyond x0, or concentrated only on outcomes above
x0.

Proof. We consider each case separately.

1. To prove the first statement of the proposition, note that risk-neutrality
of the principal implies rv = 0. Thus (52) becomes

w′(x) =

G′(x|e)
G(x|e)

ru(w(x))
. (77)

Since ru(·) > 0, optimal wage is non decreasing on [x0, x̄] if and only if
G′(x|e) ≥ 0, i.e., if and only if the ambiguity aversion effect of the prin-
cipal dominates that of the agent by Definition 1. By the same token,
optimal wage is non - increasing on [x0, x̄] if the ambiguity-aversion
effect of the agent dominates.

2. For the second statement of the proposition, observe that when the
principal is neutral to both risk and ambiguity, (77) simplifies to

w′(x) =

A′(x|e)
A(x|e)

ru(w(x))
, (78)

implying that w′(x) ≤ 0 on [x0, x̄] since A′(x|e) ≤ 0 for all x ∈ Ix by
Lemma 12. Thus the only non decreasing candidate solution satisfies
w′(x) = 0 for all x ∈ [x0, x̄], which satisfies (78) if and only if A′(x|e) = 0
for all x ∈ [x0, x̄]. Note that in the binary case (71) can be re-written as

y1(x̄)− y2(x̄) =

∫ x0

0

u′(x) [F2(x)− F1(x)] dx

+

∫ x̄

x0

u′(w(x))w′(x) [F2(x)− F1(x)] dx.

Since w′(x) = 0 on [x0, x̄],

y1(x̄)− y2(x̄) =

∫ x0

0

u′(x) [F2(x|e)− F1(x|e)] dx,

which is zero if and only if F2(x|e) = F1(x|e) a.e. x ∈ (0, x0]. Thus from
(67) we have A′(x|e) = 0 on [x0, x̄] if and only if either

`′12(x|e) = 0, ∀x ∈ (x0, x̄] (79)
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or
F2(x|e) = F1(x|e), a.e. x ∈ (0, x0]. (80)

Condition (79) is satisfied if ambiguity is concentrated only on (0, x0],
while (80) is satisfied if ambiguity is concentrated only on (x0, x̄]. Thus
if the distribution of outcome has either of these one-sided ambiguous
structures, then then the optimal wage contract is identical to the un-
ambiguous case as expressed in Corollary 1.

Remark 10. If ambiguity contaminates both sides of the support, then there
exists a sub-interval of (x0, x̄] where w′(x) < 0. For example, suppose there
exists an interval Jx = [x1, x2] where x1 ∈ (0, x0) and x2 ∈ (x0, x̄) satisfying
`′12(x|e) > 0 for all x ∈ Jx, then w′(x) ≥ 0 for all x ∈ Ix implies y1(x̄) −
y2(x̄) > 0, which in turn implies φ′A(y1(x̄)) − φ′A(y2(x̄)) > 0 by the strict
concavity of φA. Necessarily A′(x|e) < 0 on Jx, which in light of (78) implies
that w′(x) < 0 on [x2, x̄], contradicting the hypothesis that w′(x) ≥ 0 for all
x ∈ Ix. Hence, if the one-sided ambiguity structure is violated, there exists a
subset of outcomes where optimal wage is strictly decreasing.

�

6 Optimal wage under a modified admissible set

In this section, we modify one assumption, namely Assumption 5 and add
another Inada condition on the utility function u in Assumption 7. We mod-
ify also the outcome set so that Ix = [0,∞). In particular, the followings
hold.

Assumption 9. The wage is a measurable function w : Ix → R++ satisfying
w(x) ≥ 0 for all x ∈ Ix = [0,∞).

Essentially, this modification allows the wage to be greater than the out-
come for some outcomes; it is no longer constrained point-wise.

Assumption 10. The agent has utility function u : R+ → R, which is at least C2,
satisfying u(0) = 0, u′ > 0 > u′′ and the Inada conditions limw→0 u

′(w) = +∞,
and limw→∞ u

′(w) = 0.

Under the revised assumptions, the admissible control U coincides with
the set M(Ix), hence U is compact. The first major change occurs in the max-
imum condition of the PMP. In particular, equation (22) now reads

H(X(x), w(x), λ(x), λ0, x) = max
ω∈Ix

H(X(x), ω, λ(x), λ0, x) (81)

for almost every x in Ix. Under the modified maximum condition, the second
part of Theorem 10 changes to the following.
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Proposition 4. Consider the principal-agent model with a risk-neutral principal
and a risk-averse agent. For each x in Ix, the unique optimal wage satisfies

w(x) = Ξ(G(x|e)), ∀x ∈ Ix. (82)

An optimal wage satisfies the equality constraint h(w, e) = 0. Moreover, either
an optimal effort is not interior and takes value in {e, ē}, or it is interior and satisfies
(33).

Proof. Observe that with the Inada conditions imposed at the boundary of
the control set, corner solution cannot occur for any outcome. In particular,
we have H ′(0) = +∞ for all x.6 Since H ′(ω) is strictly decreasing, for each
fixed x in Ix, there exists a unique w(x) in (0, x̄) satisfying H ′(w(x)) = 0,
which is equivalent to u′(w(x))G(x|e) − 1 = 0. Recall that Ξ is the inverse
mapping to ω 7→ 1

u′(ω)
, which is strictly increasing. Hence H ′(w(x)) = 0

is equivalent to (82), as desired. The proof for the result pertaining to the
optimal level of effort is as before. �

Corollary 2. Under ambiguity neutrality, fixed wage is optimal. In particular,

w(x) = w̄ = Ξ(µh), ∀x ∈ Ix.

Proof. The corollary follows immediately from the fact that under ambiguity
neutrality (of both DMs), G = µh. �

Proposition 5. Consider the binary-state principal-agent model with a risk-neutral
principal and a risk-averse agent. If the principal is ambiguity-neutral and the agent
ambiguity-averse, then a fixed wage contract is optimal. In particular,

w(x) = w̃ = Ξ̃(µh), ∀x ∈ Ix, (83)

where Ξ̃ is the inverse mapping of ω 7→ 1
u′(ω)φ′A(u(ω))

. An optimal effort satisfies
h(w̃, e) = 0, i.e.,

φA(u(w̃))− c(e) = Ū .

Moreover, either an optimal effort is not interior and takes value in {e, ē}, or it is
interior and satisfies (33).

Proof. First, consider the case of an ambiguity-neutral principal. Since P ′ =
0, we have that µhG′ = A′, which implies that G′ ≤ 0 by virtue of Lemma
12. Hence w′(x) = Ξ′(G(x|e))G′(x|e) ≤ 0. Since w is positive-valued, the
only admissible wage that satisfies w′(x) ≤ 0 is w′(x) = 0 for all x. Denote
the fixed wage by w̃. Recall that λy = (piφ

′
A(yi))i∈I . Under constant wage,

6The optimal wage is also bounded above since the Inada condition implies H ′(∞) < 0.
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yi = u(w̃) for all i, hence A′(x) reduces to just φ′A(u(w̃))〈p,f(x|e)〉
〈p,f(x|e)〉 = φ′A (u(w̃)).

Thus the condition H ′(w(x)) = 0 simplifies to

1

u′(w̃)φ′A(u(w̃))
= µh. (84)

It is easy to check that the mapping ω 7→ 1
u′(ωφ′A(u(ω))

is strictly increasing
due to the strict concavity and monotonicity of u and φA. Hence its inverse
mapping Ξ̃ exists and we could invert (84) to obtain (83). As before, if e takes
an interior value, then the triple (µh, w̃, e) is pinned down by three equations,
namely (84), (33) and h(w̃, e) = 0. �

7 Optimal contract under moral hazard

In this section, we examine the impact of moral hazard on the optimal wage
function derived in the previous section. We will consider only the case of
two ambiguous states and two effort levels, i.e., e ∈ {eH , eL} where eH >
eL ≥ 0. Observe that in order to implement high effort level eH in this case,
the principal cannot pay a fixed wage as in the previous setting since the
agent can get away unpenalized with a a low effort level eL. In other words,
to implement the low effort, the principal just needs to offer a fixed wage
(that is just enough to satisfy the participation constraint of the agent). The
difficulty arises only when the principal wants to demand high effort from
the agent. The problem faced by the principal that is neutral to both risk and
ambiguity in this case reads:

max
w(·)

∫
(x− w(x))f(x|eH)dx (P’)

s.t.
∑
i

piφA(yi,eH )− c(eH) ≥ Ū , (IRC)∑
i

piφA(yi,eH )− c(eH) ≥
∑
i

piφA(yi,eL)− c(eL), (ICC)

where
yi,e ≡

∫
u(w(x))fi(x|e)dx, e ∈ {eH , eL}, (85)

and
f(x|·) ≡

∑
i

pifi(x|·). (86)

Let λ and µ be the Lagrange multipliers associated with the IRC and ICC
above. The necessary condition satisfied by an optimal wage function w(·)
is:

1

u′(w(x))
= µ+ λ

(
1−

∑
i piφ

′
A(yi,eL)fi(x|eL)∑

i piφ
′
A(yi,eH )fi(x|eH

)
. (87)
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Notice that under ambiguity neutrality, the fraction in the bracket on the
RHS of (87) reduces to just the ambiguity-neutral likelihood ratio:

L(x) ≡ f(x|eL)

f(x|eH)
, (88)

which is often assumed to be decreasing in outcome. It is immediate to see
that the ambiguity-neutral likelihood ratio being decreasing in outcome im-
plies that the wage is increasing in outcome. In other words, just as in the
well-known result in the moral hazard literature in absence of ambiguity, an
optimal contract in this case also involves rewarding the agent for the good
outcomes and penalizing him for the bad ones. In other words, the shape of
the optimal contract under ambiguity and ambiguity neutrality is identical
to that in absence of ambiguity.

We now consider the case of strict ambiguity aversion on the part of the
agent, i.e., the case where φA is strictly concave. The fraction in the bracket
on the RHS of (87) is the ambiguity-averse likelihood ratio (AALR), which
we shall denote by L̂:

L̂(x) ≡
∑

i piφ
′
A(yi,eL)fi(x|eL)∑

i piφ
′
A(yi,eH )fi(x|eH)

. (89)

Furthermore, we define the state-conditional likelihood ratio:

Li(x) ≡ fi(x|eL)

fi(x|eH)
, i ∈ {1, 2}, (90)

which is decreasing by the LRD assumption. In particular, higher effort shifts
the outcome distribution in the sense of LRD, which means L′i(x) ≤ 0 math-
ematically.

It can then be shown that:

L̂(x) =
∑
i

p̂i(x|eH)RiLi(x), (91)

where

p̂i(x|eH) ≡
piφ
′
A(yi,eH )fi(x|eH)∑

i piφ
′
A(yi,eH )fi(x|eH)

(92)

is the ambiguity-biased posterior probability on the occurrence of state i, and

Ri ≡
φ′A(yi,eL)

φ′A(yi,eH )
.

Differentiating the AALR yields:

L̂′(x) = [p̂′1(x|eH)L1(x) + p̂1(x|eH)L′1(x)]R1

+ [p̂′2(x|eH)L2(x) + p̂2(x|eH)L′2(x)]R2.
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Notice that p̂′1(x|e) ≥ 0 due since F1(·|e) dominates F2(·|e) in the LR sense,
for each e in {eH , eL}. Hence p̂′2(x|e) = −p̂′1(x|e) ≤ 0. At this point we do not
have enough information to conclude on the sign of L̂′. To do this, we have
to make further assumptions. Consider the following cases.

High effort is effective only in the bad state. In this case, we assume
that in the good state i = 1, the likelihood ratio is not informative of the
effort level take, i.e., L′1(x) = 0 for all x ∈ Ix. Nevertheless, it is very telling
of the effort level under the bad state i = 2, so that L′2(x) ≤ 0 for all x ∈ Ix.
We then have:

L̂′(x) = [p̂′1(x|eH)L1(x)R1

+ [p̂′2(x|eH)L2(x) + p̂2(x|eH)L′2(x)]R2,

which still has not allowed us to reach a conclusion since the first term of
this expression is positive while the second one is negative. If we push a bit
further and assume that effort can perfectly mitigate the effect of the bad state,
i.e., assume that f2(·|eH)

f1(·|eH)
is constant, then p̂′1(x) = 0, implying p̂′2(x) = 0 and so

L̂′(x) = p̂2(x|eH)L′2(x)R2 ≤ 0. (93)

Thus the wage is increasing in outcome in this case. This implies that R2 ≥
1: the principal puts even higher rewards to the ambiguity-averse agent to
motivate hard word.

8 Conclusion

Borrowing the optimal control framework, we reformulate the principal-
agent problem as a Mayer’s problem to prove the existence of an optimal
wage function in the symmetric information case. On the basis of the exis-
tence result, we employ the Pontryagin’s Maximum Principle to characterize
the solution. Our approach, which is most similar to Raviv (1979) represents
a contribution to the existing literature in a number of ways. First, we have
shown that an optimal wage is non decreasing in outcomes when the prin-
cipal is risk-averse, regardless of the DMs’ attitudes towards ambiguity and
the number of ambiguous states. In other words, non decreasing wage is ro-
bust to ambiguity aversion when the principal is risk-averse. Second, we do
not ex-ante assume an interior solution, which is not an innocuous assump-
tion in presence of ambiguity aversion when the principal is risk-neutral.
This is because the expected marginal welfare depends on the shape of the
optimal wage function. Had we assumed interior solution, we would have
concluded from (78) that constant wage were robust to ambiguity when the
principal is neutral to risk and ambiguity while the agent is averse to both,
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regardless of the structure of ambiguity. Clearly this is not the case even in
the case of two ambiguous states considered in Proposition 3.

The main limitation of our research is the generalizability of the result to
more than two ambiguous states in the case of a risk-neutral principal. We
await future research to shed light on this issue.
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