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Abstract

This study addresses time-dependent orders that lead to recursive representations based

on a Max-Min configuration. The article introduces and analyzes a structure that

is combined with a time-varying multiple discounts. This setup contributes to the

understanding of the much discussed present biases. A representation result for robust

orders is also presented.

Keywords: Axiomatization, Time-Dependent Orders, Time-Varying Multiple Dis-

counts, Multiple Present Biases.
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1. Introduction

1.1 Motivation and Results

As a result of the evidence documented by numerous laboratory experiments, a large body

of recent literature on the evaluation of utility streams has focused on the time inconsis-

tencies and present biases. Naturally, this leads to a consideration of time-dependencies

in the preferences order of an economic agent.

In this spirit, we here assume that the economic agent is characterized by a set of temporal

evaluation orders (⪰T )∞
T =0, with ⪰T denoting the decision maker’s preference after T days,

assuming he or she behaves in a time-consistent manner, in the sense that the evaluation

at time T never results in a disagreement with its present and future if these two are in

agreement with one another.

The analysis begins by considering a list of standard axioms in the temporal discount-

ing literature. The preferences orders can be represented by index functions that are

constantly additive and homogeneous of degree one. From this point onward, the ar-

ticle follows two directions. The first direction tries to find an alternative to classical

representations and to clarify the conditions under which such preferences are tempo-

rally consistent. The second direction is to examine whether temporal bias preferences

can be combined with multiple discount rates configurations that have gained increasing

popularity in the recent literature1.

By assuming that the temporal orders do not depend on the head of the sequences and,

crucially, that they satisfy a consistency property that indicates some agreement among

them—in other words, a strong monotonicity property—, the temporal evaluation can

be represented as a recursive convex sum between the utility level at that date and the

evaluation of the utility stream at the subsequence date. Interestingly, the weighting

parameters of this convex sum are not constant and depend on the very nature of that

stream. In other words, there is a possibility of multiple choices for the discount rate

that is used to evaluate the utility stream. In this context, two configurations emerge;

a configuration in which the economic agent is more affected by the losses2 than by the
1See Chambers and Echenique (2018) or Drugeon et al (2020).
2Usually called averse at loss behaviour.
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gains and, conversely, a configuration in which the joy of a gain is greater than the harm

of a loss.

It is to be stressed that the possibility of multiple choices for discount rates does not lead

to contradiction with temporal consistency. Indeed, a generalization of that property may

be obtained by adding a sationarity condition, with the direct consequence that the set

of possible discount rates does not change over time and does not affect the presence or

the absence of loss aversion behavior.

Considering the scope for temporal biases, some behaviour shall be called as present

biased when the temporal distance between two successive dates is decreasing over time.

This means that the optimal discount factor is increasing. This is a consequence of an

axiom that constrains the range of admissible time-dependent orders. In other words, the

temporal distance that is perceived between two successive dates in an immediate future

is larger than the distance that is perceived between two successive dates in a more remote

future. The study concludes by providing a representation result, i.e., a characterization

of the set of possible discount rates being used to evaluate inter-temporal utility streams,

be it with or without temporal biases.

1.2 Related Literature

To the best of our knowledge, the work that is closest to this work is the study by to

Wakai (2007). That article follows a decision theory approach based on multiple priors

Gilboa and Schmeidler (1989) applied to infinite utility streams. The author examines on

temporal orders and streams of lotteries. The core analysis is based on a time-variability

aversion condition that can be considered an extension of an ambiguity aversion property

to an inter-temporal context. He provides an insightful account of smoothing behaviors

in which the optimal discount is defined in an maxmin recursive representation.

Also related to the current study with an approach based on the set of bounded real

sequences, Chambers and Echenique (2018) put forth an axiomatic approach to multiple

discounts. Recently, this approach was revisited and extended by Drugeon and Ha-Huy

(2023) in which, based on an alternative system of axioms, an axiomatization of α-Maxmin

criteria with multiple discounts is built on the set of unanimous pre-orders.

As for the present bias dimension of this study, the most influential works on temporal
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inconsistencies under the so-called quasi-hyperbolic discounting dates back to Phelps and

Pollack (1968) and, more recently, the contributions of Laibson (1997) and Frederick et

al. (2002). Numerous experiments have supported the accuracy of this formulation.

Montiel Olea and Strzalecki (2014) have proposed an axiomatic approach to the quasi-

hyperbolic discounting representation and, more generally, to present-biased preferences.

They suppose that, for any two equivalent future sequences, a patient one and an impatient

one, pushing both toward the present, will distort the preferences towards the impatient

choice. It is to be emphasized that, by contrast, this article assumes the present bias

notion for every given date and not only for the initial one. The index functions at that

date are further determined by a set of multiple discount rates. The present bias notation

of this article incorporates thus two separate parts; the first one relating to the upper

bound of discount rates and the second one relating to the lower bound of discount rates.

Finally, Chakraborty (2017) presented a generalized notion of present biases within the

Fishburn and Rubinstein (1982) approach, in which preferences are defined based on the

realization of a single outcome at a given date. Even though this was based on an different

approach from ours, his weak present bias axiom A4 shares some similarities with the de-

creasing temporal distance axiom B1 in our article. Recently, Bach et al. (2024) extended

the axiomatic approach of Chambers and Echenique (2018) to a MaxMin representation

that encompasses the quasi-hyperbolic discounting in the literature. Following an alter-

native system of axioms, Drugeon and Ha-Huy (2023) provide an α-Maxmin presentation

of the scope for present biases.

1.3 Contents

This article is organized as follows. Section 2 details how the introduction of time-

dependencies in the preference order will result in a recursive representation. Section

3 shows that adding structure may provide a new picture for multiple temporal biases.

Section 4, considering the robust orders, equips the analysis with a representation result

for time-dependent orders. Proofs are given in the Appendix.
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2. Basic Axioms and a Recursive Min-Max

Representation

2.1 Fundamentals, Basic Axioms, and the Construction of

Index Functions

This article introduces an axiomatic approach to the evaluation of infinite utility streams

in a discrete time configuration. In order to avoid confusion, the letters x, y, z will be

used for the sequences (of utilities) (xs)∞
s=0, (ys)∞

s=0, and (zs)∞
s=0 with values in R. The

notations c1, c′1 will be used for the constant sequences (c, c, c, . . .) and (c′, c′, c′, . . .). The

notation 1 is simply the constant unitary sequence (1, 1, 1, . . . ).

The space ℓ∞ is defined as the set of real sequences (xs)∞
s=0 such that sups≥0 |xs| < +∞.

For every x ∈ ℓ∞ and T ≥ 0, let x[0,T ] = (x0, x1, . . . , xT ) denote its first T +1 components;

and x[T +1,∞) = (xT +1, xT +2, . . .) its tail starting from date T + 1, and (z[0,T ], x[T +1,+∞)) =

(z0, z1, . . . , zT , xT +1, xT +2, . . .). By convention, if T = −1, let (z[0,T ], x[T +1,∞)) = x.

As we will see in this article, a sequence
(
01[0,T ], 1

)
represents x such that x0 = x1 =

. . . = xT = 0 and xT +s = 1 for every s ≥ 1. The sequence
(
1[0,T ], 01

)
represents y such

that y0 = y1 = . . . = yT = 1 and yT +s = 0 for every s ≥ 1. Similarly, the sequence(
01[0,T ], −1

)
represents z such that z0 = z1 = . . . = zT = 0 and zT +s = −1 for every

s ≥ 1.

The preferences of the economic agent are characterized by a sequence of temporal orders

(⪰T )∞
T =0, being defined on the set of real bounded sequences ℓ∞. The order ⪰T evaluates

utility sequences from time T . More precisely, given x, y ∈ ℓ∞, the order T makes a com-

parison between them while disregarding their heads x0, x1, . . . xT −1 and y0, y1, . . . , yT −1.

Such a comparison is independent of what happens before period T . The main proper-

ties and the relation between temporal orders are presented in the following fundamental

axiom.

Axiom F. For every T ≥ 0, the order ⪰T satisfies the following properties:

(i) Completeness and transitivity: For every x, y ∈ ℓ∞, either x ⪰T y or y ⪰T x. If

x ⪰T y and y ⪰T z, then x ⪰T z. Denote as x ∼T y the case in which x ⪰T y and
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y ⪰T x. Denote as x ≻T y the case in which x ⪰T y and y ⪰̸T x.

(ii) Monotonicity: If x, y ∈ ℓ∞ and xs ≥ ys for every s ≥ T , then x ⪰T y.

(iii) Archimedeanity: For x ∈ ℓ∞, and constants c, c′ such that c1 ≻T x ≻T c′1, there are

0 < λ, µ < 1 such that

(1 − λ)c1 + λc′1 ≻T x ≻T (1 − µ)c1 + µc′1.

(iv) Constant additivity: For every x, y ∈ ℓ∞, constant c and 0 < λ < 1,

x ⪰T y ⇔ (1 − λ)x + λc1 ⪰T (1 − λ)y + λc1.

(v) Head-insensitivity: For T ≥ 1, x, y, z, z′ ∈ ℓ∞,

x ⪰T y if and only if (z[0,T −1], x[T,∞)) ⪰T (z′
[0,T −1], y[T,∞)).

(vi) Coherency: For every x, y ∈ ℓ∞, if xT = yT and x ⪰T +1 y, then x ⪰T y.

Conditions (i) to (iv) are commonly used in the temporal axiomatization literature. Curi-

ous readers may find a careful analysis and comments on these in Chambers and Echenique

(2018). Combined with the non-triviality condition (there exist x and y such that x ≻T y),

they ensure the existence of an index function IT representing the order ⪰T . Such an index

function is furthermore positively homogeneous and constantly additive.

Observe that we do not exclude the possibility that, for some T , the temporal order ⪰T is

trivial.3 Such a generalization is aimed at encompassing situations in which the economic

agent cares only about what happens before some fixed date but is indifferent afterward.

See de Andrade et al. (2021) for an interesting discussion about this type of behavior.

Throughout the article and when needed, we will make precise the non-triviality property.

Condition (v), head-insensitivity, characterizes a core property of temporal orders. The

comparison by order ⪰T between x and y is independent of what happens before the date

T . In other words, the values of x0, x1, . . . , xT −1 and y0, y1, . . . , yT −1 have no effect on the

comparison between x and y.

Condition (vi), consistency, is the most important one and establishes some agreement

between the temporal orders. It states that, an order ⪰T never leads to a disagreement
3For every x, y ∈ ℓ∞, x ∼T y.
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with its evaluations of the present and the future, if these two are to agree with each

other. This may also be considered a generalization of the monotonicity property. It is

interesting to remark that this intuitive and almost obvious condition will play a key role

in obtaining of a recursive representation with multiple discount rates.

We will first present in Lemma 2.1 the main properties of the index functions. If the order

⪰T is non-trivial, it can be represented by an index function IT in the sense that, x ⪰T y

if and only if IT (x) ≥ IT (y). More precisely, this index function is defined as

IT (x) = sup
{

c ∈ R such that x ⪰T c1
}

. (1)

The proof of parts (i) and (ii) of Lemma 2.1 can be found in Drugeon and Ha-Huy (2022),

Lemma 2.1. As to part (iii), by the head insensitivity property, it is obvious that the

value of IT (x) does not depend on x0, x1, . . . , xT −1.

Lemma 2.1. Assume axiom F and that the order ⪰T is not trivial. Then this order can be

represented by index function IT in (1). This function satisfies the positive homogeneity,

constantly additive and head-insensitivity properties:

(i) IT (λx) = λIT (x), for every λ ≥ 0.

(ii) IT (x + c1) = IT (x) + c, for every constant c ∈ R.

(iii) For every T ≥ 0, x, z ∈ ℓ∞,

IT (z[0,T −1], x[T,∞)) = IT (x).

For the sake of simplicity, by convention, in the case in which the order ⪰T is trivial, the

temporal index function IT will be defined as: IT (x) = 0 for every x ∈ ℓ∞. To end this

subsection, as a remark, if the order ⪰T is no trivial, from the monotonicity property, for

every x ∈ ℓ∞ and a constant c, we have infs≥0 xs ≤ IT (x) ≤ sups≥0 xs and IT (c1) = c.

2.2 A Recursive Representation

2.2.1 Asymmetry between Gains and Losses

Let χT
g be the evaluation of a constant gain in the future when considered from time T +1

onward, and let χT
ℓ denote the evaluation of a constant loss in the future when considered
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from time T + 1 onward. More precisely,

χT
g = IT

(
01[0,T ], 1

)
,

χT
ℓ = −IT (01[0,T ], −1).

It is obvious that both χT
g and χT

ℓ belong to the interval [0, 1]. Two configurations naturally

come under consideration, namely those that correspond to the cases χT
g ≤ χT

ℓ and χT
g ≥

χT
ℓ . The first case represents loss aversion behavior, in which the loss affects the economic

agent more than the gain. The second case represents the opposite behaviour.

Lemma 2.2 is a crucial step in developing a recursive formula with multiple discount rates.

The evaluation at period T is a recursive convex combination of the utility level at that

time and the evaluation at period T + 1. It’s important to remember that the convex

parameter isn’t a constant; it depends on the sequence at hand. If the future from period

T + 1 onwards is better than the utility level at time T , the convex parameter used is

χT
g , which corresponds to a constant gain. Conversely, if the future from period T + 1

onwards is worse, the parameter used is χT
ℓ , which corresponds to a constant loss.

Lemma 2.2. Assume axiom F. Assume also that the order ⪰T is non-trivial. For every

x ∈ ℓ∞,

(i) If xT ≤ IT +1(x), then

IT (x) = (1 − χT
g )xT + χT

g IT +1(x).

(ii) If xT ≥ IT +1(x), then

IT (x) = (1 − χT
ℓ )xT + χT

ℓ IT +1(x).

Corresponding to these two configurations, two recursive operators, namely min and max,

emerge. Proposition 2.1 presents one of the main results of this article. It introduces the

two recursive operators that, at each period T , chose the optimal discount rates as a

function of the utility streams.

Proposition 2.1. Assume axiom F. Assume also that the order ⪰T is no trivial.

Let δT = min{χT
g , χT

ℓ } and δT = max{χT
g , χT

ℓ }.

7



(i) If δT = χT
g and δT = χT

ℓ , then:

IT

(
x
)

= min
δT ≤δ≤δT

[(1 − δ)xT + δIT +1(x)] .

(ii) If δT = χT
l and δT = χT

g , then:

IT

(
x
)

= max
δT ≤δ≤δT

[(1 − δ)xT + δIT +1(x)] .

At each date, the evaluation of a utility stream is based on a recursive convex sum between

the utility level at that date, and the evaluation at the subsequent date of this stream.

Hence, a multitude of choices is possible for the weighting parameters of this convex sum.

2.2.2 An asymmetry between Head Insensitivity and Tail Insensitivity

With respect to earlier formulations in the literature, it is of interest to emphasize the

specificity of the scope for separability between time T and the past dates, which is central

to this study. Indeed, both the classical approach of Koopmans (1960) and the more

recent axiomatization of quasi-hyperbolic discounting due to Montiel Olea and Strzalecki

(2014) assume that the first or the first and second components of two utility streams

can be compared independently of their future components. Together with stationarity

or quasi-stationarity postulates on the preferences ordering, these imply the existence

of a unique discount rate for every day or every generation, such a discount rate being

constant for any T ⩾ 0 with stationarity postulate, or constant from T = 1 onward with

a quasi-stationarity postulate.

In contrast, the approach of this article postulates that the components of two utility

streams starting from a given date can be compared independently of their earlier past

components, which gives rise to the possibility of multiple discount rates.

The following example proves that, for multiple discount rates, neither the independence

nor the extended independence properties of Koopmans (1960) is satisfied. Hence, the two

approaches differ, be it in their formulation or in their predictions.

Example 2.1. Consider a configuration in which for any T ≥ 0, δT = 0.5, δT = 0.8 and

the operator is min. For any T , the order ⪰T is represented by

IT

(
x
)

= min
0.5≤δ≤0.8

[(1 − δ)xT + δIT +1(x)] .
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Consider the following two utility streams x = (1, 0, 0, 0, . . .) and y = (0.5, 0.5, 0, 0, . . .).

Obviously, I1
(
x
)

= 0, and hence, I0(x) = (1 − 0.8) × 1 + 0.8 × 0 = 0.2. Similarly,

since I2(y) = 0, we have I1
(
y
)

= (1 − 0.8) × 0.5 + 0.8 × 0 = 0.1. This implies I0
(
y
)

=

(1 − 0.8) × 0.5 + 0.8 × 0.1 = 0.18. Hence, x ≻0 y.

Consider now x′ = (1, 0, 0.5, 0.5, . . .) and y′ = (0.5, 0.5, 0.5, 0.5, . . .). The two sequences

x and y are changed by keeping the first two components intact. Since y′ is a constant

sequence, I0(y′) = 0.5. For the same reason, x′ is constant from T = 2, so I2(x′) = 0.5.

Calculus give I1
(
x′
)

= (1−0.5)×0+0.5×0.5 = 0.25 and I0(x′) = (1−0.8)×1+0.8×0.25 =

0.4. Hence, y′ ≻0 x′. The extended stationarity property of Koopmans (1960) is therefore

not satisfied.

2.2.3 Time-Variability Aversion and MaxMin Representation

It is to be stressed that, relying on a system of axioms based on time-variability aversion,

i.e., a generalization to an inter-temporal context of the well-known ambiguity aversion of

Gilboa and Schmeidler (1989), Wakai (2007) provided an insightful account of smoothing

behaviors with gain/loss asymmetry that explicitly builds on a related recursive represen-

tation with multiple discount rates and a min operator for every time T . Combined with

a stationarity property, the sets of discount rates over time were proven by the author to

have the same lower and upper bounds.

This application of an ambiguity aversion property leads to a maxmin representation,

corresponding to a loss aversion configuration, in which the losses affect the economic

agent more than his or her gains. Based on a simpler set than the set of lotteries but using

only the consistency property, this article presents a more general recursive representation

with multiple discount rates, which encompasses the configuration in Wakai (2007) as a

special case.

Axiom S 1. For any constant c ∈ R, and utility streams x, y ∈ ℓ∞,

(c, x) ⪰0 (c, y) if and only if x ⪰0 y.

Corollary 2.1. Assume axioms F and S1. Suppose that the order ⪰0 is non-trivial.

Then:

(i) For every T , δT = δ0 and δT = δ0. Let δ and δ be respectively the former and the
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later values of the discount rate. Either, for every T , the corresponding operator is

min,

IT (x) = min
δ≤δ≤δ

[
(1 − δ)xT + δIT +1(x)

]
,

or for every T , the corresponding operator is max,

IT (x) = max
δ≤δ≤δ

[
(1 − δ)xT + δIT +1(x)

]
.

(ii) Assume the convexity condition: if x ∼0 y, one has (1/2)x + (1/2)y ⪰0 x. Then for

every T ,

IT (x) = min
δ≤δ≤δ

[
(1 − δ)xT + δIT +1(x)

]
.

In Wakai (2007), it is proven that a stationarity condition is sufficient to ensure the time-

independency property of these rates. We remark that this condition is imposed in (i)

only on the present order ⪰0 corresponding to T = 0. Under an additional convexity

property and for (ii), we obtain a maxmin representation for every period or, in other

words, the economic agent becomes averse to losses.

2.3 The equivalence with α-maxmin criteria

In decision theory, under the context of uncertainty, it is well known that without assuming

convexity or concavity to the preferences, with some intuitif additional conditions, we may

obtain easily an α-maxmin representation. This raises naturally the question whether in

this article, we can come up to a similar structure. We will prove that such representation

is equivalent to a max our min operators presented in this section with new under and

upper bound of discount rates. Precisely, assume the existence of 0 ≤ αT ≤ 1 such that

for every stream x,

IT (x) = αT max
δT ≤δ≤δT

[
(1 − δ)xT + δIT +1(x)

]
+ (1 − αT ) min

δT ≤δ≤δT

[
(1 − δ)xT + δIT +1(x)

]
.

Consider the case xT ≤ IT +1(x). We obtain

IT (x) = αT

[
(1 − δT )xT + δT IT +1(x)

]
+ (1 − αT )

[
(1 − δT )xT + δT IT +1(x)

]
=
[
1 −

(
αT δT + (1 − αT )δT

)]
xT +

[
αT δT + (1 − αT )δT

]
IT +1(x).

Similarly, in the case xT ≥ IT +1(x), we have

IT (x) = (1 − αT )
[
(1 − δT )xT + δIT +1(x)

]
+ αT

[
(1 − δT )xT + δT IT +1(x)

]
=
[
1 −

(
(1 − αT )δT + αT δT

)]
xT +

[
(1 − αT )δT + αT δT

]
IT +1(x).

10



Let

δ∗ = min
{
αT δT + (1 − αT )δT , (1 − αT )δT + αT δT

}
,

δ∗∗ = max
{
αT δT + (1 − αT )δT , (1 − αT )δT + αT δT

}
.

If α ≤ 1
2 , we have δ∗ = αT δT + (1 − αT )δT and δ∗∗ = (1 − αT )δT + αT δT . It is easy to

verify that in that case,

IT (x) = min
δ∗≤δ≤δ∗∗

[
(1 − δ)xT + δIT +1(x)

]
.

Otherwise, if α ≥ 1
2 , we have δ∗ = (1−αT )δT +αT δT , δ∗∗ = αT δT +(1−αT )δT and obtain

the following representation:

IT (x) = max
δ∗≤δ≤δ∗∗

[
(1 − δ)xT + δIT +1(x)

]
.

Hence, the α-maxmin configuration is equivalent to the convex representation with ap-

propriate choice of underbound and upperbound of discount rates. It is interesting to

observe that the max and min configurations can be considered different α-maxmin rep-

resentations corresponding to parameter α is bigger or smaller than 1
2 .

Remains the question: how an α-maxmin representation can be simply considered a max

or min criterion? One of possible explanation, in our opinion, is that the set of possibles

choices (in the case of this article, the set of discount rates) is a convex hull of a finite

number of possibilities.

It is also worth noting the difference between this article and recent contributions in mul-

tiple discount rates representation, to name someone, such as Chambers and Echenique

(2018), Drugeon and Ha-Huy (2023), and Bach et al. (2024).

3. A Multiple Discount Formulation for

Present-Biased Preferences

3.1 An Alternative Understanding of Multiple Present Bi-

ases

In the literature, present bias is commonly understood as a behavior in which, an event

that happens today affects the decision maker more than the same event some day in the

11



future. A gain (loss) today causes more happiness (unhappiness) than the same gain or

loss in the future. This is one of the main sources of time inconsistencies: the decision

maker may prefer some small amount of money (or consumption good) today to a larger

amount tomorrow, but that same small amount tomorrow is less enjoyable than the same

larger amount on the day after tomorrow.

This section examines such a phenomenon within the current multiple discount setup.

The following axiom is a move in that direction. As a result of the asymmetric nature of

gain and loss, an axiom consists of two separate parts. The first part says that the delay

of a perpetual gain to the next day and at time T diminishes a decision maker’s happiness

more than it would do at time T + 1 or for other dates in the future of T . The second

part introduces another behavior: delaying a perpetual loss at date T makes the decision

maker happier than delaying the same loss in the future of T .

Axiom B 1. For any T ≥ 1 and 0 < c < 1,

(i) If (01[0,T ], 1) ∼T c1, then (01[0,T +1], 1) ⪰T +1 c1.

(ii) If (−c)1 ∼T (01[0,T ], −1), then (−c)1 ⪰T +1 (01[0,T +1], −1).

The supremum values—the greatest of the minorants—of the parameter c in parts (i) and

(ii) can be used to determine the perception of the temporal distance between date T and

date T + 1. These extremum values are determined by the evaluation at date T of the

two sequences (01[0,T ], 1) and (01[0,T ], −1). Axiom B1 means that this temporal distance

is decreasing as a function of T .4

Delaying gain and loss affects the decision maker more at time T than at time T + 1.

Indeed, at time T , delaying the gain for one day diminishes the welfare value from 1 to

c. Delaying the same gain at time T + 1 will diminish the welfare from 1 to some value

c′ ≥ c. Similarly, delaying a loss at time T increases the welfare value from −1 to −c,

which is a higher welfare increases than that obtained by delaying the same loss at time

T + 1, namely from −1 to some value (−c′) smaller than −c.

In other words, the temporal distance that is perceived between dates T and T + 1 is

larger than the one that is perceived between dates T + 1 and T + 2: at date T , the
4Axiom 10 in Montiel Olea and Strzalecki (2014) corresponds to the second part of axiom B1.
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evaluation of a constant sequence from tomorrow onward is lower than its corresponding

evaluation at date T + 1. This intuition is detailed in the following statement:

Proposition 3.1. Assume axioms F and B1. Assume also that ⪰T is non-trivial for

every T . Then the two sequences
{
δT

}∞

T =0
and

{
δT

}∞

t=0
are increasing: δT ≤ δT +1 and

δT ≤ δT +1.

The orders {⪰T }∞
T =0 are hence to be understood as being present biased.

3.2 A Multiple Discount Acception for Generalized Quasi-

Hyperbolic Preferences

The following quasi-stationarity axiom, which is similar to axiom 4 in Montiel Olea and

Strzalecki (2014), implies a generalization of quasi-hyperbolic discounting in that the

preferences satisfy a stationarity axiom for every T ≥ 1.

Axiom B 2. For any constants c, c′ ∈ R and utility streams x, y ∈ ℓ∞,

(c, c′, x) ⪰0 (c, c′, y) if and only if (c, x) ⪰0 (c, y).

Under axiom B2, one can establish a multiple discount rates version of quasi-hyperbolic

discounting.

Proposition 3.2. Assume axioms F and B2. Assume also that, for every T , the order

⪰T is non-trivial.

(i) For any T ≥ 1, δT = δ1 and δT = δ1.

(ii) Adding axiom B1, one obtains δ0 ≤ δ1 and δ0 ≤ δ1.

Although for each date T , there exists a set of possible discount rates, the quasi-stationarity

axiom B2 ensures that these sets are the same for any date T ≥ 1. As this is clarified

in Proposition 3.2(ii), combined with axiom B1, the set of discount rates associated with

date T = 0 has smaller lower and upper bounds that the sets associated with T ≥ 1.

Remark 3.1. This result provides an interesting generalization of the quasi-hyperbolic

discounting of Phelps and Pollack (1968) and Laibson (1997). Consider the case in which
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for any T , δT = δT = δT with δ0 ≤ δ1 = δ.5 The comparison between two inter-temporal

streams becomes: x ⪰0 y if and only if

(1 − δ0)x0 + δ0

( ∞∑
s=0

(1 − δ)δsx1+s

)
≥ (1 − δ0)y0 + δ0

( ∞∑
s=0

(1 − δ)δsy1+s

)
,

which is equivalent to

x0 + β

( ∞∑
s=1

δsxs

)
≥ y0 + β

( ∞∑
s=1

δsys

)
,

for β = [(1 − δ0)δ]−1δ0(1 − δ) ≤ 1.

Bach et al. (2024) also propose a multiple quasi-hyperbolic discounts and a MaxMin

representation of the index function, with a similar set of possible discount rates (δ0, δ) ∈

[δ0, δ0] × [δ, δ]. Relying on a different approach and an alternative axiomatical system,

Drugeon and Ha-Huy (2023) present an α−Maxmin representation with discount rates

satisfying a temporal stationarity property from a certain date in the future.

The core difference from the current work is that, whereas in Bach et al. (2024) and

Drugeon and Ha-Huy (2023), the optimal discount rates are chosen at the beginning of

the evaluation, in this article and as a result of the recursive representation, they are

chosen in each period, by comparing the utility values of the present with those of the

future. Moreover, in this article, a present bias property is present, with the lower and

upper bounds of possible sets increasing (or at least, not decreasing) over time.

4. The Robust Temporal Pre-orders ⪰∗
T

In decision theory, the classical contribution of Gilboa and Schmeidler (1989) opened the

way for a huge literature in which Savage’s famous sure-thing principle is not satisfied.

Without this property, the decision of an economic agent is regarded as being based on

a set of probabilities on the possible set of states of nature. Recently, this idea has been

developed in the temporal discounting literature. To cite some contributions, the work of

Chambers and Echenique (2018) characterizes conditions under which there are multiple

possible discount rates. Bach et al. (2024) and Drugeon and Ha-Huy (2023), using different

approaches, extended to a situations encompassing temporal bias phenomena.
5This property can be obtained by adding the following assertion: x ⪰ y if and only if x + z ⪰ y + z

for any z ∈ ℓ∞. In decision theory, this is the famous independence property that rules out ambiguity.
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The purpose of this section is to follow the same idea and to give a characterisation of

the set of possibles discount rates being used to evaluate inter-temporal utility streams.

In the same spirit as Ghirardato et al. (2004), we define the robust time-dependent order

⪰∗
T as follows: x ⪰∗

T y if and only if, for any z, x + z ⪰∗
T y + z. Proposition 4.1 will then

provide a characterization of the weight set ΩT that represents the robustness order ⪰∗
T.

A utility sequence x is considered robustly better than another one y if under every time

discounting evaluation belonging to ΩT , the value of x is greater than that of y.

As a preparation step, we present the following axiom.

Axiom A 1. Tail-insensitivity: For any x, y, z ∈ ℓ∞, ϵ > 0, there exists T0 and s0 such

that, for any T ≥ T0, S ≥ s0,
(
x[0,T +s], y[T +s+1,∞)

)
⪰T

(
x[0,T +s], z[T +s+1,∞)

)
− ϵ1.

The tail-insensitivity condition implies that for any x, y ∈ ℓ∞,

lim
s→∞

IT

(
x[0,T +s], y[T +s+1,∞)

)
= IT (x).

The usual conditions in the literature typically assume that the effect of the tail utilities

converges to zero, for example the continuity at infinity of Chambers and Echenique

(2018). Under the tail-insensitivity property, every temporal weight system belongs to

the set ℓ1.6

Proposition 4.1 then equips the analysis with a representation of the weight set ΩT.

Proposition 4.1. Assume axiom F. Assume that either for every T , the corresponding

operateur is min, or for every T , the corresponding operator is max. Then, if the order

⪰T is non-trivial, the weights set ΩT is the convex hull of the set
{(

1 − δT, δT(1 − δT+1), δTδT+1(1 − δT+2), . . . , δTδT+1 . . . δT+s(1 − δT+s+1), . . .
)}

,

where δT+s ∈
{
δT+s, δT+s

}
for any s.

It is well known in the literature that, besides the initial order ⪰T , there exists a robust or

unanimous pre-order, defined on a set of linear index functions.7 A given utility stream
6As an illustration, consider the order represented by the index function I(x) = (1 − δ)

∑∞
s=0 δsxs,

with some 0 < δ < 1.
7See Ghirardato et al. (2004) and Chambers and Echenique (2018) for details.
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is robustly better than another one if such a comparison is unanimous among a set of

linear orders associated with the initial order. Proposition 4.1 provides a clear and precise

description of this set.

A. Proofs for Section 2

A.1 Proof of Lemma 2.1

Suppose that the order ⪰T is non-trivial.

(i)-(ii). A proof for the existence of index function IT with properties described in the

statement of this proposition can be found in ?, proof of Lemma (2.1).

Part (iii) is a direct consequence of head-insensitivity condition.

A.2 Proof pf Lemma 2.2

Fix x ∈ ℓ∞. To simplify the exposition, let c = IT +1
(
x
)
. By consistency property, we have

x ∼T (x[0,T ], c1). Equivalently, IT

(
x
)

= IT

(
x[0,T ], c1

)
. We recall that χT

g = IT (01[0,T ], 1).

From the constant additive property,

IT (01[0,T ], −1) + IT (1) = IT (1[0,T ], 0).

Since the order ⪰T is non-trivial, IT (1) = 1. This implies

χT
ℓ = −IT (01[0,T ], −1) = 1 − IT (1[0,T ], 0).

Consider the case xT ≤ c. From head-insensitivity property,

IT

(
x
)

= IT

(
x[0,T ], c1

)
= IT

(
xT 1[0,T −1], xT , c1

)
= xT + IT

(
01[0,T ], (c − xT )1

)
= xT + (c − xT )IT (01[0,T ], 1)

=
(
1 − IT (01[0,T ], 1)

)
xT + IT (01[0,T ], 1)c

= (1 − χT
g )xT + χT

g c.
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In the case where xT ≥ c, with head-insensitivity property:

IT

(
x
)

= IT

(
x[0,T ], c1

)
= IT

(
(xT − c)1[0,T −1], xT − c, 01

)
+ c

=
(
xT − c

)
IT (1[0,T ], 01) + c

= IT (1[0,T ], 0)xT +
(
1 − IT (1[0,T ], 01)

)
c

= (1 − χT
ℓ )xT + χT

ℓ c.

A.3 Proof of Proposition 2.1

Suppose that χT
g ≤ χT

ℓ , or equivalently, IT (01[0,T ], 1) + IT (1[0,T ], 01) ≤ 1. We have

δT = χT
g = IT (01[0,T ], 1),

δT = χT
ℓ = 1 − IT (1[0,T ], 01).

Using Lemma 2.2, in the case xT ≤ c,

IT

(
x
)

= (1 − δT )xT + δT IT +1(x).

Since xT ≤ c, it is easy to verify that for every δ ≥ δT ,

(1 − δT )xT + δT c ≤ (1 − δ)xT + δc.

Hence,

IT (x) = min
δT ≤δ≤δT

[(1 − δ)xT + δIT +1(x)] .

Consider the case xT ≥ c. Always by Lemma 2.2, we have

IT

(
x
)

= (1 − δT )xT + δT IT +1(x).

Since xT ≥ c, it is easy to verify that for every δ ≤ δT ,

(1 − δT )xT + δc ≤ (1 − δ)xT + δc.

Hence,

IT (x) = min
δT ≤δ≤δT

[(1 − δ)xT + δIT +1(x)] .
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Now, suppose that χT
g ≥ χT

ℓ , or equivalently, IT (01[0,T ], 1) + IT (1[0,T ], 01) ≥ 1. We have

δT = χT
ℓ = 1 − IT (1[0,T ], 01),

δT = χT
g = IT (01[0,T ], 1).

Using the same arguments as in the first part of the proof, we obtain:

IT (x) = max
δT ≤δ≤δT

[
(1 − δ)xT + δIT +1(x)

]
,

which establishes the statement.

A.4 Proof of Corollary 2.1

(i) Fix any T ≥ 0. Suppose that (01[0,T +1], 1) ∼T +1 c1. By head-insensitivy property, we

have (01[0,T +1], 1) ∼T +1 (01[0,T ], c1).

Hence, by consistency property, (01[0,T +1], 1) ∼0 (01[0,T ], c1). By axiom S1, this im-

plies (01[0,T ], 1) ∼0 (01[0,T −1], c1), which, by head-insensitity property, is equivalent to

(01[0,T ], 1) ∼T c1. Hence χT
g = χT +1

g .

Using the same arguments with c such that (01[0,T +1], −1) ∼T +1 (−c)1, we have χT
ℓ =

χT +1
ℓ .

The sequences {χT
g }∞

T =0 and {χT
ℓ }∞

T =0 being constants through time, for any T ≥ 0, δT = δ0

and δT = δ0. Moreover, this implies that either for every T , χT
g ≤ χT

ℓ , or for every T ,

χT
g ≥ χT

ℓ . The statement in Corollary 2.1 is proved.

(ii) This is a direct consequence of the convexity property, which implies that the operator

corresponding to T = 0 is min. The details of the argument can be found in Gilboa and

Schmeidler (1989) or Wakai (2007). The rest follows part (i) of this Corollary.

B. Proofs for Section 3

B.1 Proof of Proposition 3.1

Recall that, for any T ,

δT = min
{
IT (01[0,T ], 1), 1 − IT (1[0,T ], 01)

}
,

δT = max
{
IT (01[0,T ], 1), 1 − IT (1[0,T ], 01)

}
.
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From axiom B1, both of the two sequences {IT (01[0,T ], 1)}∞
T =0 and {1 − IT (1[0,T ], 01)}∞

T =0

are increasing. This in its turn implies that the two sequences {δT }∞
T =0 and {δT }∞

T =0 are

also increasing.

B.2 Proof of Proposition 3.2

(i) Fix any T ≥ 1. Suppose that (01[0,T +1], 1) ∼T +1 c1. By head-insensitivy property, we

have (01[0,T +1], 1) ∼T +1 (01[0,T ], c1).

Hence, by consistency property, (01[0,T +1], 1) ∼0 (01[0,T ], c1). By axiom B2, this im-

plies (01[0,T ], 1) ∼0 (01[0,T −1], c1), which, by head-insensitity property, is equivalent to

(01[0,T ], 1) ∼T c1. Hence χT
g = χT +1

g .

Use the same arguments, one gets χT
ℓ = χT +1

ℓ . Then for any T ≥ 1, δT = δ1 and δT = δ1.

(ii) The second part is a direct consequence of the present bias property.

C. Proofs for Section 4

C.1 Proof of Proposition 4.1

First, recall that the dual space of ℓ∞ , i.e., the set of bouneded real sequences can be

decomposed into the direct sum of two subspaces, ℓ1 and ℓd
1: (ℓ∞)∗ = ℓ1⊕ℓd

1. The subspace

ℓ1 satisfies σ-additivity property. The subspace ℓd
1, the disjoint complement of ℓ1, is the

one of finitely additive measures defined on N. More precisely, for each measure ϕ ∈ ℓd
1,

for any x ∈ ℓ∞, the value of ϕ · x depends only on the distant behaviour of x, and does

not change if there are only a change in a finite number of values xs, s ∈ N.

Define P∗
T as the positive polar cone of PT =

{
x ∈ ℓ∞ such that x ⪰∗

T 01
}

in the dual

space
(
ℓ∞
)∗

:

P∗ =
{
P ∈ (ℓ∞)∗ such that P · x ≥ 0 for every x ⪰∗

T 01
}
.

Observe that by the very definition of the order ⪰∗, P is convex and separable by the

vector −1, the cone P∗ does not degenerate to {01}. We have x ⪰∗
T y if and only if

P · x ≥ P · y for every P ∈ PT .

For each P ∈ P∗, define

π(P) = 1
P · 1

P.
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Since x ⪰∗
T 01 for every x ∈ ℓ∞ satisfying xs ≥ 0 for all s, it follows that P · x ≥ 0 for

every x such that xs ≥ 0 for every s.

Now, we begin the main part of the proof.

Without loss of generalisation, we have only to prove Proposition 4.1 for T = 0. Consider

the case where every operator is min. For T ≥ 0,

IT

(
x
)

= min
δT ≤δ≤δT

[(1 − δ)xT + δIT +1(x)] .

We have

I0(x) = min
δ0≤δ0≤δ0,...,δT ≤δT ≤δT

{
(1 − δ0)x0 + δ0(1 − δ1)x1 + . . . + δ0δ1 . . . δT −1(1 − δT )xT

+ δ0δ1 . . . δT IT +1(x)
}
. (2)

Observe that

lim
T →∞

δ0δ1 . . . δT = 0.

Indeed, consider some value c > 0. Using (2), it is easy to verify that

I0
(
01[0,T ], (−c)1

)
= (δ0δ1 . . . δT ) × (−c).

By tail-insensitivity property, one has

lim
T →∞

I0
(
01[0,T ], (−c)1

)
= 0,

which implies that

lim
T →∞

δ0δ1 . . . δT = 0.

Let ΩT is the convex hull of the set
{(

1 − δT, δT(1 − δT+1), δTδT+1(1 − δT+2), . . . , δTδT+1 . . . δT+s(1 − δT+s+1), . . .
)}

,

where δT+s ∈
{
δT+s, δT+s

}
for any s.

Since limT →∞ δ0δ1 · · · δT = 0, we verify that Ω0 ⊂ ℓ1.

Now, consider some sequence x ∈ ℓ∞. First, we prove that

I0(x) = inf
ω∈Ω0

(ω · x).

Denote by {δ∗
T }∞

T =0 the sequence of discount rates such that for every T ≥ 0,

IT

(
x
)

= (1 − δ∗
T )xT + δ∗

T IT +1(x).
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Recall that

I0(x) = (1 − δ∗
0)x0 + δ∗

0(1 − δ∗
1)x1 + . . . + δ∗

0δ∗
1 . . . δ∗

T −1(1 − δ∗
T )xT + δ∗

0δ∗
1 . . . δ∗

T IT +1(x).

Let T converges to infinity, since δ∗
0δ∗

1 . . . δ∗
T converges to zero, we have

I0(x) = lim
T →∞

(
(1 − δ∗

0)x0 + δ∗
0(1 − δ∗

1)x1 + . . . + δ∗
0δ∗

1 . . . δ∗
T −1(1 − δ∗

T )xT

)
.

Assume that I(x) > infω∈Ω0(ω · x). Then there exists a sequence {δT }∞
T =0 such that for

every T , δT ≤ δT ≤ δT , and

I0(x) = lim
T →∞

(
(1 − δ∗

0)x0 + δ∗
0(1 − δ∗

1)x1 + . . . + δ∗
0δ∗

1 . . . δ∗
T −1(1 − δ∗

T )xT

)
> lim

T →∞

(
(1 − δ)x0 + δ0(1 − δ1)x1 + . . . + δ0δ1 . . . δT −1(1 − δT )xT

)
.

Hence, for T sufficiently large, one gets

(1 − δ∗
0)x0 + δ∗

0(1 − δ∗
1)x1 + . . . + δ∗

0δ∗
1 . . . δ∗

T −1(1 − δ∗
T )xT + δ∗

0δ∗
1 . . . δ∗

T IT +1(x)

> (1 − δ)x0 + δ0(1 − δ1)x1 + . . . + δ0δ1 . . . δT −1(1 − δT )xT + δ0δ1 . . . δT IT +1(x),

a contradiction with (2).

Let P0 = π(P0), with P0 is defined in the first part of the proof. The set P0 represents

the weights set corresponding to the robuste order ⪰∗. We have to prove that P0 = Ω0.

If Ω0 is not a subset of P0, then there exists x ⪰∗ 01 such that ω · x < 0, for some ω ∈ Ω0.

This implies I(x) < 0: a contradiction. Hence, Ω0 ⊂ P0.

Now, assume that for x, y ∈ ℓ∞, we have ω · x ≥ ω · y for every ω ∈ Ω0. It is easy to verify

that for any z ∈ ℓ∞,

I0(x + z) = inf
Ω0

ω · (x + z)

≥ inf
Ω0

ω · (y + z)

= I0(y + z),

which implies x ⪰∗ y, by the definition of the robuste order ⪰∗. Hence, P0 ⊂ Ω0.

Consider the case where every operator is max. For T ≥ 0,

IT

(
x
)

= max
δT ≤δ≤δT

[(1 − δ)xT + δIT +1(x)] .
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Define the order ⪰̂T as: x⪰̂T y if and only if (−y) ⪰T (−x). We can verify that the

sequence of orders satisfies Axiom F. For every T ≥ 0, the order ⪰̂T can be represented

by and index function ÎT . Moreover,

ÎT

(
x
)

= min
δT ≤δ≤δT

[
(1 − δ)xT + δÎT +1(x)

]
.

Applying the same arguments as in the first part of the proof, the claim of this Proposition

is proved.
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