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Abstract

We consider a general Ramsey model with endogenous discounting, depending on

current consumption or future capital, study the monotonicity properties of the

optimal path, and provide a new narrative for the existence of a poverty trap,

alternative to the literature on convex-concave production functions. We prove

the continuity and differentiability properties of the value function, as well as

the monotonicity of the policy correspondence, which in turn entails the strict

monotonicity of the optimal path. Importantly, the existence of a poverty trap

relies on the existence of a critical level of capital such that, if the initial condition

is lower, the optimal path converges to the origin, while, if it is higher, this path

converges to a positive steady state. Since it is impossible to compute this critical

level under endogenous discounting when the discount factor is a general function

of current consumption or future capital, in both these cases, we complement

the theoretical analysis with robust corresponding examples and, showing that a

poverty trap exists for a nonzero-measure set of parameter values, we demonstrate

that the poverty trap is a pervasive feature under endogenous discounting.

Keywords: Endogenous discounting, dynamic programming, Ramsey-Cass-Koopmans

model.

JEL classification numbers: C61, D11, O4.

1. Introduction

Discounting is key to shape individual decision, drive capital accumulation and gen-

eral equilibrium dynamics. In order to put current and future generations on an
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equal footing, Ramsey (1928) assumes that there is no discounting. Phelps (1961),

Cass (1965) and Koopmans (1965) draw on Fisher (1930)’s approach to introduce an

exogenous discount rate and revise Ramsey’s main conclusion to obtain a modified

golden rule. Fisher (1930) is also relevant to endogenous discounting, conjecturing

that wealth increases the individual’s level of patience and, consequently, reversing

the causal nexus of Ramsey (1928)’s conjecture, which refers to an economy with

exogenous discounting, but heterogeneous agents, and stipulates that the most pa-

tient agent becomes the richest in the long run. Uzawa (1968) was the first to model

discounting on the basis of past consumption experience. Since then, an exten-

sive literature has developed on the dynamic properties and time inconsistency of

economies where discounting is a function of other variables, namely consumption

or wealth (see Vasilev (2022), among others).

Our aim is to adopt a general approach when discounting depends on consump-

tion experience or wealth in order to draw robust conclusions about the dynamic

properties of the optimal path, such as monotonicity or the existence of a poverty

trap.

We study optimal growth models in which the discount factor may not be constant,

but may depend on either consumption or the level of capital.

We consider a standard period utility u depending solely on consumption and a

standard production function f in a discrete-time optimal growth model. Given a

feasible capital path (xt)
∞
t=0, the corresponding consumption sequence is determined

by ct = f(xt)− xt+1.

In what follows, we define intertemporal utility recursively and consider two speci-

fications of discounting.

(1) First, we assume that intertemporal utility depends only on the consumption

path:

U(c0, c1, c2, . . .) = u(c0) + δ(c0)U(c1, c2, c3, . . .).

The intertemporal utility of the consumption path (c0, c1, . . . ) is defined as a sum of

the period utility u (c0) and the discounted utility derived from future consumption,

determined by the sequence (c1, c2, . . . ).

(2) Alternatively, we assume that, instead of current capital, the discount factor

depends on future capital. The intertemporal utility generated by (xt)
∞
t=0 is given
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by:

W (x0, x1, . . .) = u (f(x0)− x1) + δ(x1)W (x1, x2, . . .).

We will take a closer look at these criteria later. By developing these recursive forms

to infinity, under appropriate boundedness properties ensuring the convergence of

infinite sums, we find the following.

(1) Discounting based on consumption:

U(c0, c1, . . . ) = u(c0) +
∞∑
t=1

u(ct)
t−1∏
s=0

δ(cs).

(2) Discounting based on future capital with ct = f(xt)− xt+1:

W (x0, x1, . . .) = u(c0) +
∞∑
t=1

u(ct)
t−1∏
s=0

δ(xs+1).

In the limit case where the discount factor δ no longer depends on consumption or

capital, both criteria collapse and we recover the classical Ramsey-Cass-Koopmans

model:

W (x0, x1, . . .) =
∞∑
t=0

δtu(ct).

Our paper is close to Borissov et al. (2025). However, they consider an intertem-

poral utility defined as a recursive convex combination of current and future utility

generating a weighted average of current and futures period utilities as value. In

this respect they remains close to Chambers and Echenique (2018), but, differently,

as in our paper, they consider endogenous discounting. More precisely, their dis-

counting depends positively on current consumption or capital and, negatively, on

future capital.

Here, we focus only on two cases, that is on a function of current consumption or

future capital. We assume that, in the case of the first criterion, functions δ(ct) is

increasing, while, in the second case, δ(xt+1) is supposed to be either decreasing or,

differently from Borissov et al. (2025), increasing. In the first case, we capture Fisher

(1930)’s intuition that the present weighs more when the agent is poorer. In the

second case, we do not impose restrictions on the sign of δ′(xt+1): forward-looking

discounting can be increasing or decreasing. We just consider a strictly increasing

function in the example.
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The main added value of our contribution rests on the proofs of monotonicity of the

optimal path and of the existence of a poverty trap.

The central question of our contribution is: since the discount factor is endogenous,

can an economy starting from a low level of capital stock converge to a better state,

or will it remain trapped at a low level despite high initial productivity? The logic

of a pessimistic scenario is simple: when the economic agent is poor, the discount

factor is low, which leads to future underinvestment and, thus, creates a vicious

circle that traps the economy in poverty.

In the literature, such a vicious circle arises when a low capital stock has a low pro-

ductivity, which is the case in presence of fixed costs or Allee effects. The economy

therefore exhibits a critical level of capital stock, generally referred to as Dechert-

Nishimura-Skiba point, with the property that, below this level, the economy col-

lapses and, above it, it can converge to a positive state.1

In this paper, we focus on the endogenous discount factor as an alternative expla-

nation for the existence of a poverty trap. We are faced with difficulties that do not

appear in the literature on convex-concave production functions, where the existence

of a critical level and a poverty trap relies on the interplay between the (constant)

discount factor, productivity at the inflection point2 and maximum average produc-

tion.3 The analysis becomes difficult or even impossible when the discount factor is

no longer constant. In this case, it is not easy to find the general conditions for the

existence of a poverty trap. To overcome this theoretical obstacle, we specify the

fundamentals in two examples where the critical level delimiting the poverty trap

appears to be a pervasive feature, in the sense that the trap exists for an infinite

number of parameter values.

In many respects, these examples remain sufficiently general to capture robust prop-

erties. Firstly, the production function is Cobb-Douglas, meaning that productivity

at the origin is infinite, while the utility function has a constant elasticity of intertem-

1 Interested readers are referred to the classic contributions by Clark (1971), Skiba (1978), Majum-

dar and Mitra (1982) and Dechert and Nishimura (1983). They are also referred to a recent review

by Akao et al. (2025). Hung et al. (2009) also show the existence of a critical level, but in the

context of a production function aggregating two different technologies.
2 The level where the production function changes its shape from convex to concave.
3 See Dechert and Nishimura (1983) and Le Van and Dana (2003) for low, high and intermediate

discounting conditions. The poverty trap appears in the case of high or intermediate discounting.
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poral substitution. Secondly, the discount factor function is simply hyperbolic, and

the existence of a poverty trap depends only on the value of its curvature.

More precisely, we prove the monotonicity of the optimal policy correspondence,

which guarantees that, if an optimal path does not start from a steady state, it must

be strictly monotonic. The existence of a poverty trap is linked to the existence of

a critical level of capital such that, if the initial condition is below (above), the

optimal path converges towards the origin (towards a positive steady state). The

monotonicity property of the optimal policy correspondence guarantees that, if a

critical level exists, it is unique.

We cannot conclude without referring to what is probably the closest paper to ours,

that is Erol et al. (2011), where the sum of discounted factors differs from one and

discounting is endogenous. In their contribution, the discount factor β (xt+1) ∈ (0, 1)

depends on future capital (see their Proposition 4) with β′ (xt+1) > 0 (the rich are

more patient). As in our paper, they define the intertemporal utility as the sum

of current utility and a discounted future utility. However, our paper differs from

theirs in many respects. In the first part, we consider also a discounting which,

in the spirit of Uzawa (1968), depends on consumption as a proxy of wealth or

consumption habits. In the second part, we focus on future capital, but we remain

more general, because our theoretical results hold in both cases of increasing or

decreasing discounting (β′ (xt+1) ⋚ 0). Importantly, we find a monotonicity property

and, so, rule out cycles also in the less favorable case β′ (xt+1) > 0 (notice that there

is no room for cycles in Borissov et al. (2025) when β′ (xt+1) < 0). Finally, Erol

et al. (2011) show the monotonicity property of the optimal path and the existence

of a poverty trap only through numerical simulations, while we prove that through

a robust analytical example with very standard production, utility and discounting

functions.

In the first part, we study the case where discounting is a function of current con-

sumption and we complement the theoretical results with a simple but robust exam-

ple in order to prove the existence of a poverty trap more explicitly. In the second

part, we consider the case where discounting depends on future capital and, simi-

larly to what we obtain in the first part, we show the existence of a poverty trap

more explicitly. All proofs are gathered in the Appendix.
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2. Discounting as a function of current

consumption

2.1 Fundamentals

Let f , u and δ be the production, utility and discount functions respectively. The

intertemporal utility function satisfies the recursive structure :

U(c0, c1, c2, . . .) = u(c0) + δ(c0)U(c1, c2, c3, . . .).

The optimization program can be formulated as follows

max
(ct,xt+1)

∞
t=0

[
u(c0) +

∞∑
t=1

u(ct)
t−1∏
s=0

δ(cs)

]
,

subject to ct + xt+1 ≤ f(xt), ct ≥ 0, xt ≥ 0 for any t, given x0 ≥ 0.

Given the initial condition x0 ≥ 0, the accumulation path χ = (x0, x1, . . .) is said

to be feasible from x0 if 0 ≤ xt+1 ≤ f(xt) for any t. The set of all feasible paths

is denoted by Π(x0). Under the increasing monotonicity of f , if x0 < x′0, then

Π(x0) ⊂ Π(x′0). A consumption sequence (c0, c1, . . . ) is feasible from x0 ≥ 0 if there

exists χ ∈ Π(x0) such that 0 ≤ ct ≤ f(xt)− xt+1 for any t ≥ 0.

Let us introduce the following assumptions about the properties of production, util-

ity and discounting.

Assumption 1.

1. The production function f : R+ → R+ is continuous, strictly concave and

strictly increasing, and it satisfies f(0) = 0, limx→∞ f ′(x) < 1.

2. The function δ is continuous, non-decreasing, twice differentiable, and concave:

for any c > 0, δ′(c) ≥ 0 and δ′′(c) ≤ 0.

3. The utility function u : R+ → R+ is continuous, strictly increasing and strictly

concave, and it satisfies the Inada condition u′(0) = ∞.

4. u(0) = 0.

Let us justify the double condition in u(0) = 0: the utility function is bounded from

below and the value at zero is normalized to zero. We want the intertemporal utility

function to satisfy the following two properties.
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1. Pareto property: for any two sequences (c0, c1, c2, . . .) and (c′0, c
′
1, c

′
2, . . .) with

ct ≥ c′t for every t, with at least one strict inequality, then U(c0, c1, c2, . . .) >

U(c′0, c
′
1, c

′
2, . . .).

2. U(c0, c1, c2, . . .) is strictly concave with respect to each argument ct.

If the discount factor function δ is not constant, the Pareto property implies that u

is bounded from below. Indeed, assume that u(0) = −∞ and there are c0 > c′0 such

that δ(c0) > δ(c′0). Choose c close enough to zero so that

u(c)

1− δ(c)
<
u(c′0)− u(c0)

δ(c0)− δ(c′0)
.

It is easy to check that U(c0, c, c, . . .) < U(c′0, c, c, . . .), a contradiction.

By the concavity of U with respect to each argument ct, the function U(c, 0, 0, . . .)

is also concave with respect to c. More explicitly,

U(c, 0, 0, . . .) = u(c) + δ(c)
u(0)

1− δ(0)

is a concave function with respect to c. Let us define a new utility function û:

û(c) ≡ u(c) + δ(c)
u(0)

1− δ(0)
− u(0)

1− δ(0)
.

Clearly, û is also a strictly increasing function (by the Pareto property), concave,

with û(0) = 0. Let Û be defined as:

Û(c0, c1, c2, . . .) ≡ U(c0, c1, c2, . . .)−
u(0)

1− δ(0)
.

The function Û represents the same preferences as U . A simple calculus gives us:

Û(c0, c1, c2, . . .) = û(c0) + δ(c0)Û(c1, c2, c3, . . .) = û(c0) +
∞∑
t=1

û(ct)
t−1∏
s=0

δ(cs).

Therefore, we can always study the problem with a utility function u such that

u(0) = 0.

2.2 Optimal path and Bellman equation

Noting that the constraints will be binding at the optimum because utility is strictly

increasing and the discount function is strictly positive, we introduce the function

W defined over the set of consumption sequences as follows:

U(c0, c1, c2 . . .) = u(c0) +
∞∑
t=1

u(ct)
t−1∏
s=0

δ(cs).
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The following lemma presents some preliminary results. Its proof is a direct appli-

cation of Tychonov’s Theorem (see, among others, Stokey et al. (1989) and Le Van

and Dana (2003)). For each sequence of capital χ =
(
xt
)∞
t=0

, let the corresponding

consumption sequence be defined as ct = f(xt)− xt+1 for any t ≥ 0, and W be the

function defined on the set of feasible sequences:

W (x0, x1, x2, . . .) = U(c0, c1, c2, . . .).

Lemma 2.1 is standard, and provides compactness and continuity properties guar-

anteeing the existence of an optimal path.

Lemma 2.1. Let xM be the solution to f(x) = x. Then,

1. For any χ ∈ Π(x0), we have xt ≤ max
{
x0, x

M
}
.

2. Π(x0) is compact in the product topology defined in the space of sequences χ.

3. W is well-defined and it is continuous over Π(x0) in the product topology.

The initial optimal growth model becomes equivalent to the following program:

max
χ∈Π(x0)

W (χ).

The existence of an optimal path is a direct consequence of the fact that Π(x0) is

compact for the product topology defined in the space of sequences χ, and that U

is continuous in this topology. The positivity of optimal consumption and capital

stock paths follows from the Inada condition and the boundedness of the discount

function.

The value function V is defined by

V (x0) ≡ max
χ∈Π(x0)

W (χ),

for x0 ≥ 0.

The utility function is bounded from below, and the bounds of discounting, together

with the existence of a maximum sustainable capital stock, guarantee a finite value

function. It can be shown that the value function is non-negative and continuous.

Under these conditions, the Bellman functional equation can be established, which

accepts the value function V as a unique solution.
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Proposition 2.1. 1. For any x0 ≥ 0, argmaxχ∈Π(x0)W (χ) is a nonempty set.

2. The value function V is continuous and strictly increasing. It satisfies the

Bellman equation

V (x0) = max
0≤y≤f(x0)

[
u
(
f(x0)− y

)
+ δ
(
f(x0)− y

)
V (y)

]
,

for any x0 ≥ 0.

3. A sequence χ ∈ Π(x0) is the optimal solution if and only if it satisfies the

equation

V (xt) = u
(
f(xt)− xt+1

)
+ δ
(
f(xt)− xt+1

)
V (xt+1).

The optimal policy correspondence, φ : R+ → P (R+), is defined as follows:

φ(x0) = arg max
0≤y≤f(x0)

[u (f(x0)− y) + δ (f(x0)− y)V (y)] .

Note that the solution may not be unique. The non-emptiness and closedness of the

optimal correspondence, as well as its equivalence to the optimal path, can be easily

deduced from the continuity of the value function using a standard application of the

Maximum Theorem. Proposition 2.2 states the main properties of φ with important

consequences thereafter, such as the monotonicity of optimal paths.

Proposition 2.2. 1. φ is closed and upper hemi-continuous and φ(0) = {0}.

2. If x0 > 0, then 0 < x1 < f(x0) for any x1 ∈ φ(x0).

3. A sequence χ ∈ Π(x0) is optimal if and only if xt+1 ∈ φ(xt) for any t ≥ 0.

4. Assume that y ∈ φ(x), y′ ∈ φ(x′) with x < x′, then y ≤ y′.

2.3 Dynamics

2.3.1 Euler equation and monotonicity of the optimal path

We begin our study of the long run by characterizing the Euler equations. Interest-

ingly, although these equations involve the utility function u and the value function

V , the optimal path remains unchanged.

Proposition 2.3. Fix x0 > 0 and an optimal path χ ∈ Π(x0) starting from x0.
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1. The path χ satisfies the Euler equation for any t ≥ 0:

u′
(
f(xt)− xt+1

)
= δ
(
f(xt)− xt+1

)
u′
(
f(xt+1)− xt+2

)
f ′(xt+1)

− δ′
(
f(xt)− xt+1

)
V (xt+1)

+ δ
(
f(xt)− xt+1

)
f ′(xt+1)δ

′(f(xt+1)− xt+2

)
V (xt+2).

(1)

2. For any t ≥ 0, φ(xt+1) is a singleton and the value function V is differentiable

at xt+1.

Observe that the right-hand side of the Euler equation is strictly increasing with

respect to xt+2. In other words, φ(xt+1) is a singleton for any t ≥ 1. Following

the same arguments as in the proofs of Theorem 6 and Corollary 4 in Dechert

and Nishimura (1983), we conclude that the value function V is differentiable at xt

when t ≥ 1. But, by Monotone Differentiation Theorem,4 the value function is also

differentiable almost everywhere.

In addition, the Euler equations entail important properties of non-trivial steady

states. A necessary condition for their existence is established. Moreover, if the

economy starts from an initial level that does not correspond to a steady state, it

can asymptotically converge to a steady state, but it can never reach it in a finite

number of periods.

Proposition 2.4. Assume that x∗ is a positive steady state.

1. We have

δ
(
f(x∗)− x∗

)
f ′(x∗) = 1. (2)

2. For any optimal path
(
xt
)∞
t=0

, if x0 ̸= x∗, then xt ̸= x∗ for any t ≥ 0.

The monotonicity of the optimal policy correspondence guarantees that, if an opti-

mal path does not start from a steady state, it would never reach one. Proposition

2.5 states a stronger property: if an optimal path starts from a steady state, it will

remain there indefinitely.

Proposition 2.5. 1. If x∗ is a steady state, then φ(x∗) = {x∗}.

4 Interested readers are referred to Theorem 1.6.25 in Tao (2011).
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2. Any optimal path is either constant or strictly monotonic.

A natural question arises about how we can determine whether an optimal path

is increasing or decreasing. Lemma 2.2 provides a partial answer to this question.

It should be noted that this result is established without relying on the convexity

structure of RCK models, particularly the concavity of the intertemporal utility

function and the value function. To overcome the difficulties associated with the

absence of such convexity, we develop a new approach to solve the problem. Details

are provided in the Appendix.

Lemma 2.2. Fix any open interval I ⊂
(
0, xM

)
.

1. If δ
(
f(x)− x

)
f ′(x) > 1 for any x ∈ I, then there exists no strictly decreasing

optimal path (xt)
∞
t=0 such that xt ∈ I for any t ≥ T , for some T large enough.

2. If δ
(
f(x)− x

)
f ′(x) < 1 for any x ∈ I, then there exists no strictly increasing

optimal path (xt)
∞
t=0 such that xt ∈ I for any t ≥ T , for some T large enough.

Lemma 2.2 generalizes a well-known result: if productivity exceeds the discount

rate, the economy accumulates capital, whereas, in the opposite case, the capital

stock shrinks.

Proposition 2.6 provides a characterization of optimal paths. Part (1) states that,

if, for a small value of the capital stock, productivity exceeds the discount rate, then

the optimal path from these values is increasing. Part (2) provides a condition for

an inverse result.

Proposition 2.6. 1. If lim infx→0 δ
(
f(x)− x

)
f ′(x) > 1, then any optimal path

converges to a positive steady state.

2. If δ
(
f(x) − x

)
f ′(x) < 1 for every x > x̂ for some positive value x̂, then any

optimal path starting from x0 > x̂ is strictly decreasing.

A direct consequence of Proposition 2.6 is a generalization of well-known results of

the Ramsey-Cass-Koopmans (RCK) framework, with a constant discount rate.

2.3.2 Poverty trap

Let the critical value for poverty trap be defined as a positive value xC such that: if

x0 < xC , then every optimal path from x0 converges to the origin and, if x0 > xC ,
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then every optimal path from x0 remains bounded away from zero. The monotonicity

property of the optimal policy correspondence φ guarantees that, if xC exists, it is

unique. Lemma 2.3 provides a simple characterization of the existence of the poverty

trap based on the monotonicity of optimal paths.

Lemma 2.3. A poverty trap exists if and only if there is an optimal path that con-

verges to the origin and an optimal path that converges to a positive steady state.

Note that, contrary to intuition, poverty trap can occur in a situation where every

optimal path is non-increasing. In particular, we do not rule out the possibility of

a steady state x∗ such that, while every optimal path starting from x0 < x∗ strictly

decreases and converges to the origin, every optimal path starting from x0 > x∗

decreases and converges to x∗.

From Lemma 2.3, we deduce a simple characterization of the existence of the poverty

trap. If there are positive capital stocks x0 < x′0 such that there is a decreasing

optimal path starting from x0 and converging to the origin, and there is an increasing

optimal path starting from x′0, the poverty trap exists.

Lemma 2.2 helps us better understand the poverty trap. To see it more clearly, let us

consider a configuration where equation (2) has exactly two positive solution xs < xs.

It is clear that δ
(
f(x)−x

)
f ′(x) < 1 in the interval (0, xs) and δ (f(x)− x) f ′(x) > 1

in (xs, x
s). The two values xs and xs are candidates for a steady state.5 Clearly, if

a poverty trap exists, the corresponding critical level should be smaller or equal to

xs. Otherwise every optimal path converges to the origin.

Consider the case where xs is a steady state, which is the case when, for instance,

φ is a continuous function crossing twice the 45-degrees line at xs and x
s.

Assume that the economy starts at x0 < xs. Then, every optimal path is decreasing

and converging to the origin. Otherwise it should be increasing and converging to xs,

a contradiction with part (2) of Lemma 2.2. If the economy starts at x0 ∈ (xs, x
s),

always by Lemma 2.2, the optimal capital path increases and therefore converges

to xs, the remaining candidate for steady state. If x0 > xs, clearly, every optimal

path converges to xs. Hence, xs is an unstable steady state and it turns out to be

5 The number of candidates for a steady state may be infinite, or even uncountable, as in the case

where δ
(
f(x) − x

)
= 1/f ′(x) for every x in some interval of R+. However, the set of parameter

values for which this occurs has measure zero.
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the critical level of the economy. Conversely, the higher value xs is a locally stable

steady state.

Suppose now that xs is not a steady state because the optimal transition is discon-

tinuous. Assume the existence of a critical level xC < xs. Starting from x0 > xC ,

the economy converges to xs. It is important to understand what happens at xC .

By definition, since xs is not a steady state, xC /∈ φ
(
xC
)
. The property of upper

hemi-continuity6 ensures that φ contains at least two different elements x and x

such that x < xC < x. Therefore, starting from xC , there is at least one optimal

path converging to xs, and at least one optimal path converging to the origin. We

see that optimal choice “jumps” from below to above the 45-degrees line, when the

capital stock crosses xC from below.

Finally, we cannot exclude a third situation, where the higher candidate xs represents

also a critical level. In this case, there is only one non strictly decreasing path:

(xs, xs, xs, . . .).

How could we know whether the economy converges to the origin or to a non-trivial

steady state? Lemma 2.4 provides a partial answer to this question. For ease of

notation, let cy ≡ f(y)− y.

Lemma 2.4. Assume that equation (2) has exactly two positive solutions xs < xs,

with δ
(
f(x)− x

)
f ′(x) < 1 if x < xs and δ

(
f(x)− x

)
f ′(x) > 1 if x ∈ (xs, x

s).

1. If ∫ xs

0

[
δ(cy)f

′(y)− 1
] [ u′(cy)

1− δ(cy)
+

u(cy)δ
′(cy)[

1− δ(cy)
]2
]
dy

<

∫ xs

x0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy,

then there exists x < xs such that every optimal path starting from x0 < x

converges to the origin.

2. If ∫ xs

0

[
δ(cy)f

′(y)− 1
] [ u′(cy)

1− δ(cy)
+

u(cy)δ
′(cy)[

1− δ(cy)
]2
]
dy

>

∫ xs

0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy,

6 Under the upper hemi-continuity property, the graph of φ, that is the set of (x, y) such that

y ∈ φ(x), is closed.

13



then there exists x < xs such that every optimal path starting from x0 > x

converges to xs.

Lemma 2.4 provides a sufficient condition for the existence of a convergent trajec-

tory towards the origin, as well as the existence of a non-degenerate path. This is

important to establish an example where two types of trajectory coexist or, in other

words, where a poverty trap exists. As the conditions are stated not only in terms

of economic fundamentals, but also in terms of value function, we prefer to call this

result a lemma.

3. Example of hyperbolic discounting with

consumption

We give an example of high productivity at zero, where there is a poverty trap.

Let f(x) ≡ Axα, u(c) ≡ cρ with 1/2 < α < 1 and 0 < ρ < 1. We denote the solution

to f ′(x) = 1 by

xG ≡ (αA)
1

1−α .

We introduce a hyperbolic discounting:

δb(c) ≡ c

b+ c
,

where b > 0 is a constant. Function δb(c) is clearly concave with respect to c.

This form captures the key properties of a discount factor: continuity, increasing

monotonicity, boundedness between zero and one, and convergence to one with the

necessary asymptotic concavity. Thanks to these properties and the wide range of

the parameter b, which allows concavity to be modulated, the conclusions we will

obtain with this functional form are robust: by continuity in the function space,

they will hold in a neighborhood of our hyperbolic specification.

The proof of Lemma 3.1 is conceptually simple, but its computations are cumber-

some. The single-peak property simplifies the analysis of the equation (1) since, in

general, with an appropriate choice of the constant b, this equation has exactly two

positive solutions. We can therefore focus on these two candidate steady states.
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Observe that equation δb (f(x)− x) f ′(x) = 1 is equivalent to

αAxα−1
(
Axα − x

)
b+ Axα − x

= 1.

Lemma 3.1. Function ζ(x) ≡ αAxα−1
(
Axα − x

)
−
(
Axα − x

)
is single-peaked.

If 0 < b < bM ≡ maxx∈[0,xG] ζ(x), equation ζ(x) = b has exactly two solutions

xs(b) < xs(b): xs(b) is increasing with respect to b, xs(b) is decreasing. Moreover,

δb
(
f(x) − x

)
f ′(x) > 1 if x ∈ (xs(b), x

s(b)) and δb
(
f(x) − x

)
f ′(x) < 1 if x /∈

[xs(b), x
s(b)].

From now on, to avoid any confusion, we will call E(b) the economy corresponding

to the discount function δb. The corresponding intertemporal utility function will be

denoted by U b(c0, c1, c2, . . .) and the value function by V b. For each feasible capital

sequence
(
xt
)∞
t=0

, let also

W b(x0, x1, x2, . . .) ≡ U b(c0, c1, c2, . . .),

with ct = f(xt)− xt+1 for t ≥ 0.

Finally, let C be the set of parameters b such that E(b) exhibits a poverty trap.

Proposition 3.1. There exist two positive values b < b such that (b, b) ⊂ C.

The proof is articulated in two parts. First, we prove that there exists b ∈
(
0, bM

)
such that the economy E(b) has a poverty trap. Second, we prove that C contains

an open interval of parameters.

4. Discounting as a function of future

capital

In this section, we reconsider the economy in Erol et al. (2011), where the discount

factor depends on future capital. We address the following problem:

max

[
u(c0) +

∞∑
t=1

u(ct)
t−1∏
s=0

δ(xs+1)

]
,

subject to ct + xt+1 ≤ f(xt), ct ≥ 0, xt ≥ 0 for any t, given x0 ≥ 0.

Assumption 2.
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1. The production function f : R+ → R+ is continuous, strictly concave and

strictly increasing with the limit conditions: f(0) = 0, limx→∞ f ′(x) < 1.

2. Function δ is differentiable with respect to x, with 0 < δ(x) < 1 for any x ≥ 0.

3. The utility function u : R+ → R+ is bounded from below, continuous, strictly

increasing and strictly concave with the Inada condition u′(0) = ∞.

As you can see, we impose neither a condition on the minimum value u(0) of utility,

nor a condition about decreasing or increasing monotonicity of δ. Proposition 4.1

lists some standard results from the dynamic programming literature.

Proposition 4.1. 1. For any x0 ≥ 0, there exists an optimal path starting from

x0. If x0 > 0, then 0 < xt+1 < f(xt) for any t.

2. The value function V is continuous and strictly increasing. It satisfies the

Bellman equation

V (x0) = max
0≤y≤f(x0)

[
u
(
f(x0)− y

)
+ δ(y)V (y)

]
,

for any x0 ≥ 0.

3. A sequence χ ∈ Π(x0) is the optimal solution if and only if it satisfies:

V (xt) = u
(
f(xt)− xt+1

)
+ δ(xt+1)V (xt+1).

The optimal policy correspondence φ : R+ → P (R+) is defined as follows:

φ(x0) = arg max
0≤y≤f(x0)

[
u (f(x0)− y) + δ(y)V (y)

]
.

Proposition 4.2 presents fundamental properties of the optimal policy correspon-

dence and grounds some important dynamical results such as the monotonicity of

the optimal paths.

Proposition 4.2. 1. φ is closed and upper hemi-continuous.

2. A sequence χ ∈ Π(x0) is optimal if and only if xt+1 ∈ φ(xt) for any t ≥ 0.

3. Assume that y ∈ φ(x), y′ ∈ φ(x′) with x < x′. Then, y ≤ y′.

Proposition 4.3 presents the Euler equations and shows that, from date t = 1 on,

every optimal path is unique. This finding echoes a well-known result in Dechert

and Nishimura (1983).
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Proposition 4.3. Let
(
xt
)∞
t=0

be an optimal path starting from x0 > 0.

1. The Euler equation is given by:

u′
(
f(xt)−xt+1

)
= δ(xt+1)u

′(f(xt+1)−xt+2

)
f ′(xt+1)+ δ

′(xt+1)V (xt+1). (3)

2. For t ≥ 1, the optimal policy correspondence is a function (φ(xt) is a single-

ton).

A direct consequence is that, if x∗ is a steady state, then φ(x∗) = {x∗}. Since the

right-hand side is strictly increasing with respect to xt+2, we obtain φ(xt) = {xt+1}
for any t ≥ 0. Applying the same arguments as in the proof of Theorem 6 and

Corollary 4 in Dechert and Nishimura (1983), we prove that V (xt) is differentiable

at xt for t ≥ 1. The Monotone Differentiation Theorem ensures that the value

function V (x) is differentiable almost everywhere.

Proposition 4.4 states a necessary equation for the steady state. Importantly, if the

economy starts from a non-steady state, then the optimal path of capital is strictly

monotonic. Therefore, the economy converges either to a positive steady state or to

the origin.

It is worth noting that, if δ is increasing and u(c) > 0 for any c > 0, the steady

state is larger than the Modified Golden Rule of the Ramsey-Cass-Koopmans model.

The same happens in Erol et al. (2011). Conversely, if δ is decreasing, the economy

experiences a smaller steady state.

Proposition 4.4. Assume that x∗ > 0 is a steady state.

1. x∗ is a solution to the following equation:

δ(x∗)f ′(x∗) = 1−
δ′(x∗)u

(
f(x∗)− x∗

)[
1− δ(x∗)

]
u′
(
f(x∗)− x∗

) . (4)

2. If
(
xt
)∞
t=0

is an optimal path starting from x0 ̸= x∗, then xt ̸= x∗ for any t ≥ 0.

Moreover, this sequence is strictly monotonic.

Proposition 4.5 echoes a well-known result holding when the discount factor δ is

constant. Interestingly, our new approach leads to results without any convexity

assumption.
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Proposition 4.5. 1. Assume the existence of x̂ > 0 such that, for any y < x̂,

δ(y)f ′(y) > 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) .
Then, every optimal path converges to a strictly positive steady state.

2. Consider x0 > 0 and assume that, for any y > x0,

δ(y)f ′(y) < 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) .
Then, every optimal path starting from x0 is strictly decreasing.

Corollary 4.1 is a direct consequence of Proposition 4.5 and generalizes a classical

result of the Ramsey-Cass-Koopmans model: the optimal sequence is increasing

when the productivity is high; decreasing when the productivity is low.

Corollary 4.1. 1. Assume that, for y sufficiently small,

δ(y)f ′(y) > 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) .
Then, every optimal path converges to a positive steady state.

2. Assume that, for 0 < y < xM ,

δ(y)f ′(y) < 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) .
Then, every optimal path converges to the origin.

Let us show why Corollary 4.1 implies Propositions 9 and 10 in Erol et al. (2011).

In their article, u(c) > 0 for c > 0 and δ′(y) > 0. Let us define

ε ≡ sup
y∈(0,xM )

δ′(y)u
(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) .
Note that this value is smaller than the corresponding one in Erol et al. (2011). If

supy≥0 δ(y)f
′(0) < 1− ε, then, for any y ≥ 0,

δ(y)f ′(y) ≤ sup
y≥0

δ(y)f ′(0) < 1− ε ≤ 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) ,
and any optimal path converges to the origin. This is precisely the conclusions of

Proposition 9.
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Focus now on Proposition 10 in Erol et al. (2011). The condition infy≥0 δ(y)f
′(0) > 1

implies that, for y small enough,

δ(y)f ′(y) > 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) ,
and that every optimal path converges to a positive steady state.

Let us now turn to the main result. Proposition 4.6 states sufficient conditions for

the existence of decreasing or increasing optimal paths. While traditionally, these

properties are easy to derive by exploiting the convexity properties, in our paper,

we are forced to develop new techniques to overcome potential non-convexities.

Proposition 4.6. Fix x0 that is not a steady state.

1. Assume that, for any x∗ > x0 solution to (4),∫ x∗

x0

([
δ(y)f ′(y)− 1

]u′(f(y)− y
)

1− δ(y)
+
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
)
dy < 0,

Then, every optimal path starting from x0 is decreasing.

2. Assume that, for any x∗ < x0 solution to (4) or x∗ = 0,∫ x∗

x0

([
δ(y)f ′(y)− 1

]u′(f(y)− y
)

1− δ(y)
+
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
)
dy > 0,

Then, every optimal path starting from x0 is increasing.

To illustrate Proposition 4.6, Corollary 4.2 considers the properties of a normal

context where there are exactly two positive steady-state candidates. The Corollary

provides a condition under which the larger candidate is a steady state, and a

condition under which there is an optimal path converging to the origin.

Corollary 4.2. Assume that equation (4) has exactly two positive solutions xs < xs

with the following property:

δ(y)f ′(y) < 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) , (5)

if 0 < y < xs or y > xs, and

δ(y)f ′(y) > 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) , (6)

if xs < y < xs.
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1. If ∫ xs

0

([
δ(y)f ′(y)− 1

]u′(f(y)− y
)

1− δ(y)
+
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
)
dy > 0,

then xs is a steady state and there exists x < xs such that every optimal path

starting from x0 > x converges to xs.

2. If ∫ xs

0

([
δ(y)f ′(y)− 1

]u′(f(y)− y
)

1− δ(y)
+
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
)
dy < 0,

then there exists x > 0 such that every optimal path starting from x0 < x

converges to the origin.

Let

η(y) ≡
[
δ(y)f ′(y)− 1

]u′(f(y)− y
)

1− δ(y)
+
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2 .

Conditions (5) and η(y) > 0 are equivalent, as are conditions (6) and η(y) < 0.

The function η(y) is negative in (0, xs) and positive in (xs, x
s). If the integral of

this function in the “positive region” dominates that in the “negative one”, we are

assured that xs is a locally stable steady state. Conversely, starting with low capital

stock, the economy converges to the origin.

5. Example of hyperbolic discounting with

capital

Let us define f(x) ≡ Axα and u(c) ≡ cρ with α, ρ ∈ (0, 1). Reconsider a hyperbolic

discounting:

δb(x) =
x

b+ x
,

where b > 0 is constant.

As seen above, because of the properties of a discount factor and scalability of the

parameter b, this functional form leads to robust results and demonstrates that the

poverty trap is a pervasive feature under endogenous discounting.
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Let E(b) be the economy associated to the discount function δb. The following

equation is key to prove the existence of a poverty trap:

δb(x)f ′(x) = 1−
δb′(x)u

(
f(x)− x

)[
1− δb(x)

]
u′
(
f(x)− x

) .
Let C be the set of parameters b such that E(b) exhibits a poverty trap.

Proposition 5.1. There exist two positive values b < b such that (b, b) ⊂ C.

The arguments of the proof are similar to those of Section 3, but now we apply

Lemma 4.2. For appropriate values of b > 0, equation (4) has two positive solutions

xs(b) < xs(b). By introducing the new auxiliary function:

Φ(b) ≡
∫ xs(b)

0

([
δb(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
+
δb′(y)u

(
f(y)− y

)[
1− δb(y)

]2
)
dy,

and proving the existence of b such that Φ(b) > 0, we can show that the economy has

an optimal path converging to xs(b). Similarly, there exists b such that Φ(b) < 0 and

the economy has an optimal path converging to the origin. Repeating the arguments

of Section 3, we prove that there exists a value between these two critical values such

that the corresponding economy experiences a poverty trap.

6. Conclusion

In this paper, we have addressed the issue of the monotonicity of the optimal path

and of the existence of a poverty trap when discounting is endogenous and depends

on current consumption or future capital.

In order to obtain this results, preliminarily, we have proven the existence of an

optimal path and shown that the set of feasible sequences is compact and the in-

tertemporal utility is continuous in the product topology. Then, we have proven

that, if the utility function is bounded from below and discounting is bounded, then

the value function is finite, non-negative and continuous. Interestingly, it is also

the unique solution of the Bellman functional equation and is differentiable almost

everywhere.

We have also provided a characterization of the policy function, showing that the

continuity of the value function implies the non-emptiness and closedness of the
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optimal correspondence, and that the optimal policy correspondence is monotonic.

Even if the policy function may not be unique, it is a singleton for any xt for

t ≥ 1. We have remarked that the differentiability of the Bellman equation almost

everywhere rests on the fact that the policy correspondence is singleton almost

everywhere from t = 1 on.

After obtaining these technical but important results, we have shown the mono-

tonicity of the optimal policy correspondence, which ensures that, if an optimal

path does not start from a steady state, it must be strictly monotonic. The exis-

tence of a poverty trap is linked to the existence of a critical level of capital such

that, if the initial condition is below (above), the optimal path converges towards

the origin (towards a positive steady state). The monotonicity property of the op-

timal policy correspondence is key to guarantee that, if a critical level exists, it is

unique.

However, since it is far from easy to give general conditions for the existence of a

critical level under endogenous discounting, we have complemented our theoretical

analysis with two examples corresponding to the cases where discounting depends,

respectively, on current consumption or future capital and proven explicitly that, in

both cases, a poverty trap exists for a nonzero-measure set of values in the parameter

space. Because of the robustness of these examples, it appears that the poverty trap

is far from being a rare event in economies with endogenous discounting.

We leave for future research the examination of the case where discounting depends

on current capital, as already done by Borissov et al. (2025) but in a different context

(intertemporal utility as a weighted average of period utilities), while observing that,

according to their results, the dynamic properties remain qualitatively similar to

those of the case where discounting depends on current consumption.

7. Appendix

7.1 Proof of Lemma 2.1

See the proof of Lemma 2 in Le Van and Morhaim (2002). QED
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7.2 Proof of Proposition 2.1

Use the same arguments as in the proof of Proposition 3.4.1 in Le Van and Dana

(2003). QED

7.3 Proof of Proposition 2.2

Parts (i), (ii) and (iv) come directly from Proposition 2.1. The Maximum Theorem

implies (iii).

Let us prove part (v): for any x < x′ and y ∈ φ(x), y′ ∈ φ(x′), we have y ≤ y′.

Assume the contrary, that is y > y′. We obtain

u
(
f(x)− y

)
+ δ (f(x)− y)V (y) ≥ u

(
f(x)− y′

)
+ δ (f(x)− y′)V (y′),

u
(
f(x′)− y′

)
+ δ (f(x′)− y′)V (y′) ≥ u

(
f(x′)− y

)
+ δ (f(x′)− y)V (y).

Summing these inequalities, we get

u
(
f(x)− y

)
+ u
(
f(x′)− y′

)
+ δ (f(x)− y)V (y) + δ (f(x′)− y′)V (y′)

≥ u
(
f(x)− y′

)
+ u
(
f(x′)− y

)
+ δ (f(x)− y′)V (y′) + δ (f(x′)− y)V (y)

Thus, using the same argument as in Dechert and Nishimura (1983),7 with x < x′

and y > y′, we find

δ
(
f(x)− y

)
V (y) + δ

(
f(x′)− y′

)
V (y′) > δ

(
f(x)− y′

)
V (y′) + δ

(
f(x′)− y

)
V (y).

This inequality implies

V (y′)
[
δ
(
f(x′)− y′

)
− δ
(
f(x)− y′

)]
> V (y)

[
δ
(
f(x′)− y

)
− δ
(
f(x)− y

)]
or, equivalently,

V (y′)

∫ x′

x

δ′
(
f(z)− y′

)
f ′(z)dz > V (y)

∫ x′

x

δ′
(
f(z)− y

)
f ′(z)dz,

leading to a contradiction with the concavity property of δ. QED

7 The argument is based on the strict supermodularity property: for x < x′ and y < y′ such that

0 < y < f(x) and 0 < y′ < f(x′), we have u
(
f(x)−y

)
+u
(
f(x′)−y′

)
> u

(
f(x)−y′

)
+u
(
f(x′)−y

)
.

See Amir (1996, 2005) for the properties of supermodular functions.
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7.4 Proof of Proposition 2.3

Part (1). The partial derivative of U(c0, c1, c2, . . .) with respect to xt+1 is equal to

zero because 0 < xt+1 < f(xt) for any t ≥ 0. Computing the derivative with respect

to xt+1, we obtain:

u′
(
f(xt)− xt+1

)
= −δ′

(
f(xt)− xt+1

)
u
(
f(xt+1)− xt+2

)
+ δ
(
f(xt)− xt+1

)
u′
(
f(xt+1)− xt+2

)
f ′(xt+1)

− δ′
(
f(xt)− xt+1

)
δ
(
f(xt+1)− xt+2

)
V (xt+2)

+ δ
(
f(xt)− xt+1

)
δ′
(
f(xt+1)− xt+2

)
f ′(xt+1)V (xt+2)

= δ
(
f(xt)− xt+1

)
u′
(
f(xt+1)− xt+2

)
f ′(xt+1)− δ′

(
f(xt)− xt+1

)
V (xt+1)

+ δ
(
f(xt)− xt+1

)
f ′(xt+1)δ

′(f(xt+1)− xt+2

)
V (xt+2).

Part (2). The right-hand side of the Euler equation is strictly increasing with respect

to xt+2. Hence, φ(xt+1) is a singleton for any t ≥ 1.

Using the same arguments as in the proofs of Theorem 6 and Corollary 4 in Dechert

and Nishimura (1983), the value function V is differentiable at xt+1, for any t ≥
0. QED

7.5 Proof of Proposition 2.4

(i) Assume that x∗ > 0 is a steady state. Let c∗ = f(x∗)− x∗. Observe that

V (x∗) =
u(c∗)

1− δ(c∗)
.

Using Euler equation, we find

u′(c∗) = −δ′(c∗)u(c∗) + δ(c∗)u′(c∗)f ′(x∗)

− δ′(c∗)δ(c∗)
u(c∗)

1− δ(c∗)
+ δ(c∗)δ′(c∗)f ′(x∗)

u(c∗)

1− δ(c∗)
.

This implies

u′(c∗)
[
1− δ(c∗)f ′(x∗)

]
= −δ

′(c∗)u(c∗)

1− δ(c∗)

[
1− δ(c∗)f ′(x∗)

]
.

Recalling that u(c∗) > 0, we get δ
(
f(x∗)− x∗

)
f ′(x∗) = 1.

(ii) Assume the contrary. Then, there exists some t ≥ 0 such that xt ̸= x∗, and

xt+1 = x∗. The sequence (xt, x
∗, x∗, . . .) is an optimal path starting from xt.
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Consider the case xt < x∗. Recalling that δ
(
f(x∗)− x∗

)
f ′(x∗) = 1 and u(c) > 0 for

any c > 0, and using Euler equation, we obtain:

u′
(
f(xt)− x∗

)
= −δ′

(
f(xt)− x∗

)
u
(
f(x∗)− x∗

)
+ δ
(
f(xt)− x∗

)
u′
(
f(x∗)− x∗

)
f ′(x∗)

− δ′
(
f(xt)− x∗

)
δ
(
f(x∗)− x∗

)
V (x∗) + δ

(
f(xt)− x∗

)
δ′
(
f(x∗)− x∗

)
f ′(x∗)V (x∗)

< −δ′
(
f(x∗)− x∗

)
u
(
f(x∗)− x∗

)
+ δ
(
f(x∗)− x∗

)
u′
(
f(x∗)− x∗

)
f ′(x∗)

− δ′
(
f(x∗)− x∗

)
δ
(
f(x∗)− x∗

) u
(
f(x∗)− x∗

)
1− δ

(
f(x∗)− x∗

)
+ δ
(
f(x∗)− x∗

)
δ′
(
f(x∗)− x∗

)
f ′(x∗)

u
(
f(x∗)− x∗

)
1− δ

(
f(x∗)− x∗

)
= u′

(
f(x∗)− x∗

)
,

a contradiction.

In the case xt > x∗, applying the same arguments, but with reversed inequalities,

also leads to a contradiction. QED

7.6 Proof of Proposition 2.5

Part (1). Since x∗ is a steady state, the sequence (x∗, x∗, x∗, . . .) is an optimal path

starting from x∗. By Proposition 2.3, φ(x∗) is a singleton.

Part (2). Consider x0 > 0 that is not a steady state. By Proposition 2.4, there is

no t such that xt is a steady state. This implies xt+1 ̸= xt for every t, otherwise xt

will be a steady state. If x0 < x1, since x1 ∈ φ(x0) and x2 ∈ φ(x1), Proposition 2.2

implies that x1 < x2. By induction, we get xt < xt+1 for any t.

If x0 > x1, using the same arguments, we find that the path
(
xt
)∞
t=0

is strictly

decreasing.

The monotonicity of
(
xt
)∞
t=0

entails that this sequence has a limit. The hemi-

continuity property of the optimal policy correspondence ensures that this limit

is a steady state. QED

7.7 Proof of Lemma 2.2

Part (1). Assume the contrary. Then there exists an open interval I ⊂
(
0, xM

)
such

that for any x ∈ I, δ
(
f(x) − x

)
f ′(x) > 1, and a strictly decreasing optimal path(

xt
)
t≥0

such that xt ∈ I for every t ≥ T from some T large enough.
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Since (xT , xT , . . .) is feasible,

V (xT ) ≥
u
(
f(xT )− xT

)
1− δ

(
f(xT )− xT

) .
The following inequality holds for any t:

u
(
f(xt)− xt

)
1− δ

(
f(xt)− xt

) ≥ u
(
f(xt)− xt+1

)
+ δ
(
f(xt)− xt+1

) u
(
f(xt+1)− xt+1

)
1− δ

(
f(xt+1)− xt+1

) .
Indeed, considering the following function

Ψ(y) ≡ u
(
f(xt)− y

)
+ δ
(
f(xt)− y

) u
(
f(y)− y

)
1− δ

(
f(y)− y

) ,
we can prove that Ψ′(y) > 0 in the interval (xt+1, xt). For the sake of simplicity, let

cy = f(y)− y, with dcy/dy = f ′(y)− 1.

Recalling that u(cy) > 0 and f ′(y) > 1, for y ∈ (xt+1, xt), we have

Ψ′(y) ≡ −u′
(
f(xt)− y

)
− δ′

(
f(xt)− y

) u(cy)

1− δ(cy)

+ δ
(
f(xt)− y

)[1− δ(cy)
]
u′(cy) + u(cy)δ

′(cy)[
1− δ(cy)

]2 [
f ′(y)− 1

]
> −u′(cy)− δ′(cy)

u(cy)

1− δ(cy)
+ δ(cy)

[
1− δ(cy)

]
u′(cy) + u(cy)δ

′(cy)[
1− δ(cy)

]2 [
f ′(y)− 1

]
= u′(cy)

[
−1 +

δ(cy)
[
f ′(y)− 1

]
1− δ(cy)

]
+
δ′(cy)u(cy)

1− δ(cy)

[
−1 +

δ(cy)
[
f ′(y)− 1

]
1− δ(cy)

]

=
δ(cy)f

′(y)− 1

1− δ(cy)

[
u′(cy) +

δ′(cy)u(cy)

1− δ(cy)

]
> 0.

The function Ψ is strictly increasing in the interval (xt+1, xt), which implies that

Ψ(xt) > Ψ(xt+1). Thus, the inequality holds for t ≥ T , and

u
(
f(xT )− xT

)
1− δ

(
f(xT )− xT

) > u
(
f(xT )− xT+1

)
+ δ
(
f(xT )− xT+1

) u
(
f(xT+1)− xT+1

)
1− δ

(
f(xT+1)− xT+1

)
> u

(
f(xT )− xT+1

)
+ δ
(
f(xT )− xT+1

)
u
(
f(xT+1 − xT+2

)
+ δ
(
f(xT )− xT+1

)
δ
(
f(xT+1)− xT+2

) u
(
f(xT+2)− xT+2

)
1− δ

(
f(xT+2)− xT+2

)
> . . . ≥ V (xT ),

a contradiction.

Part (2). We arrive at a contradiction, following exactly the same arguments as

before, but with inverse inequalities and a decreasing function Ψ in the interval

(xt, xt+1) (under the hypothesis that the optimal path is strictly increasing). QED
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7.8 Proof of Proposition 2.6

Part (1). Since lim infx→0 δ
(
f(x) − x

)
f ′(x) > 1, there exists z > 0 small enough

such that δ
(
f(x) − x

)
f ′(x) > 1 for any x < z. The convergence of

(
xt
)
t≥0

to the

origin implies the existence of a period T such that xt ∈ (0, z) for any t ≥ T , a

contradiction with Lemma 2.2.

Part (2). Assume the contrary: there exists an increasing optimal path
(
xt
)∞
t=0

starting from x0 > x̂. Since lim infx→0 δ
(
f(x) − x

)
f ′(x) < 1 in this interval, this

path contains a non-steady state element. Proposition 2.5 implies that it is strictly

decreasing, and we come to a contradiction with Lemma 2.2. QED

7.9 Proof of Lemma 2.3

Clearly, if the poverty trap xC exists, there are two sequences that satisfy the prop-

erties mentioned in the statement of this lemma. We can use the definition of xC

and the monotonicity property of optimal paths.

Now, let’s assume the existence of an optimal path
(
xt
)∞
t=0

converging to zero, and

a sequence
(
xt
)∞
t=0

converging to a positive steady state. Let xC be the infimum of

the set of capital levels x0 such that there exists an optimal path starting from x0,

bounded away from zero.

The existence of a path converging to zero implies xC > 0. Indeed, if xC = 0, by the

definition of xC , any optimal path starting from x0 > 0 should be bounded away

from zero, a contradiction.

Since we have chosen xC in this way, if x0 < xC , any optimal path starting from x0

will converge to the origin. On the other hand, if x0 > xC , Proposition 2.2 guarantees

that any optimal path starting from x0 will be bounded away from zero. QED

7.10 Proof of Lemma 2.4

Before proving parts (1) and (2), let us observe that, starting from x0 ̸= xs, the

economy never converges to xs. Let us assume the contrary: xs is a steady state.

Consider the case x0 < xs. This means that the optimal path
(
xt
)∞
t=0

strictly

increasese towards xs. Recalling that, in the interval (0, xs), δ
(
f(x) − x

)
f ′(x) < 1

and using the same arguments as in the proof of Proposition 2.6, we come to a
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contradiction.

In the case xs < x0 < xs, a similar argument leads also to a contradiction. Hence,

starting from a non-steady state, the economy either converges to xs, or to the

origin.

Part (1). Fix x < xs close enough to the origin such that∫ xs

x0

[
δ(cy)f

′(y)−1
] [ u′(cy)

1− δ(cy)
+

u(cy)δ
′(cy)[

1− δ(cy)
]2
]
dy <

∫ xs

x0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy,

for every x0 < x.

Let
(
xt
)∞
t=0

be the optimal path starting from x0 < x. Assume that it is increasing

and converging to a positive steady state. Clearly, this steady state is xs. For any

t,

V (xt+1)− V (xt) ≥ u
(
f(xt+1)− xt+1

)
+ δ
(
f(xt+1)− xt+1

)
V (xt+1)

− u
(
f(xt)− xt+1

)
− δ
(
f(xt)− xt+1

)
V (xt+1)

=

∫ xt+1

xt

u′
(
f(y)− xt+1

)
f ′(y)dy + V (xt+1)

∫ xt+1

xt

δ′
(
f(y)− xt+1

)
f ′(y)dy

≥
∫ xt+1

xt

u′
(
f(y)− y

)
f ′(y)dy +

∫ xt+1

xt

δ′
(
f(y)− y

)
f ′(y)V (y)dy

=

∫ xt+1

xt

u′
(
f(y)− y

)
f ′(y)dy +

∫ xt+1

xt

δ′
(
f(y)− y

)
f ′(y)

u(cy)

1− δ(cy)
dy

+

∫ xt+1

xt

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy.

Therefore,

V (xs)− V (x0) =
∞∑
t=0

[
V (xt+1)− V (xt)

]
≥
∫ xs

x0

u′
(
f(y)− y

)
f ′(y)dy +

∫ xs

x0

δ′
(
f(y)− y

)
f ′(y)

u(cy)

1− δ(cy)
dy.

+

∫ xs

x0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy

Consider now the left-hand side:

V (xs)− V (x0) ≤
u
(
f(xs)− xs

)
1− δ

(
f(xs)− xs

) − u
(
f(x0)− x0

)
1− δ

(
f(x0)− x0

)
=

∫ xs

x0

[
1− δ(cy)

]
u′(cy) + u(cy)δ

′(cy)[
1− δ(cy)

]2 [
f ′(y)− 1

]
dy
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Hence,∫ xs

x0

[
1− δ(cy)

]
u′(cy) + u(cy)δ

′(cy)[
1− δ(cy)

]2 [
f ′(y)− 1

]
dy

≥
∫ xs

x0

u′
(
f(y)− y

)
f ′(y)dy +

∫ xs

x0

δ′
(
f(y)− y

)
f ′(y)

u(cy)

1− δ(cy)
dy

+

∫ xs

x0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy.

This implies∫ xs

x0

[
δ(cy)f

′(y)−1
] [ u′(cy)

1− δ(cy)
+

u(cy)δ
′(cy)[

1− δ(cy)
]2
]
dy ≥

∫ xs

x0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy,

a contradiction.

Part (2). Fix x close enough to xs such that∫ x0

0

[
δ(cy)f

′(y)−1
] [ u′(cy)

1− δ(cy)
+

u(cy)δ
′(cy)[

1− δ(cy)
]2
]
dy ≥

∫ x0

0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy,

for any x0 > x.

Let
(
xt
)∞
t=0

be the optimal path starting from x0 < x. Assume that it is decreasing

and converging to the origin. For any t,

V (xt)− V (xt+1) ≤ u
(
f(xt)− xt+1

)
+ δ
(
f(xt)− xt+1

)
V (xt+1)

− u
(
f(xt+1)− xt+1

)
− δ
(
f(xt+1)− xt+1

)
V (xt+1)

=

∫ xt

xt+1

u′
(
f(y)− xt+1

)
f ′(y)dy + V (xt+1)

∫ xt

xt+1

δ′
(
f(y)− xt+1

)
f ′(y)dy

≤
∫ xt

xt+1

u′
(
f(y)− y

)
f ′(y)dy +

∫ xt

xt+1

δ′
(
f(y)− y

)
f ′(y)V (y)dy

=

∫ xt

xt+1

u′
(
f(y)− y

)
f ′(y)dy +

∫ xt

xt+1

δ′
(
f(y)− y

)
f ′(y)

u(cy)

1− δ(cy)
dy

+

∫ xt

xt+1

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy.

Therefore,

V (x0)− V (0) =
∞∑
t=0

[
V (xt)− V (xt+1)

]
≤
∫ x0

0

u′
(
f(y)− y

)
f ′(y)dy +

∫ x0

0

δ′
(
f(y)− y

)
f ′(y)

u(cy)

1− δ(cy)
dy.

+

∫ x0

0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy.
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Consider now the left-hand side:

V (x0)− V (0) ≥
u
(
f(x0)− x0

)
1− δ

(
f(x0)− x0

) − u
(
f(0)− 0

)
1− δ

(
f(0)− 0

)
=

∫ x0

0

[
1− δ(cy)

]
u′(cy) + u(cy)δ

′(cy)[
1− δ(cy)

]2 [
f ′(y)− 1

]
dy.

Hence,∫ x0

0

[
1− δ(cy)

]
u′(cy) + u(cy)δ

′(cy)[
1− δ(cy)

]2 [
f ′(y)− 1

]
dy

≤
∫ x0

0

u′
(
f(y)− y

)
f ′(y)dy +

∫ x0

0

δ′
(
f(y)− y

)
f ′(y)

u(cy)

1− δ(cy)
dy

+

∫ x0

0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy.

Therefore,∫ x0

0

[
δ(cy)f

′(y)−1
] [ u′(cy)

1− δ(cy)
+

u(cy)δ
′(cy)[

1− δ(cy)
]2
]
dy ≤

∫ x0

0

δ′(cy)f
′(y)

[
V (y)− u(cy)

1− δ(cy)

]
dy,

a contradiction. QED

7.11 Proof of Lemma 3.1

We have

δb
(
f(x)− x

)
f ′(x) =

αAxα−1
(
Axα − x

)
b+ Axα − x

=
αAx2α−1

(
A− x1−α

)
b+ Axα − x

.

Fixing α > 1/2, we obtain limx→0 δ
b
(
f(x)− x

)
f ′(x) = 0.

Equation δb (f(x)− x) f ′(x) = 1 is equivalent to

αAxα−1
(
Axα − x

)
b+ Axα − x

= 1.

Now, let’s study the function ζ(x) = αAxα−1
(
Axα − x

)
−
(
Axα − x

)
. Observe that

ζ(x) =
[
f(x)− x

][
f ′(x)− 1

]
.

Equation δ
(
f(x)− x

)
f ′(x) = 1 is equivalent to ζ(x) = b.

We will show that the function ζ is single-peaked in the interval
[
0, xG

]
: there

exists x̂ ∈
(
0, xG

)
such that ζ is increasing in [0, x̂) and decreasing in

(
x̂, xG

]
. The

advantage of working with single-peaked functions is that, with an appropriate choice

of the parameter b, the equation δ
(
f(x) − x

)
f ′(x) = 1 has exactly two solutions,

meaning that there are exactly two steady-state candidates.
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Recalling that ζ(0) = ζ
(
xG
)
= 0 and letting x̂ ∈ argmax0≤x≤xG ζ(x), we can prove

that x̂ is the unique solution to ζ ′(x) = 0 in
(
0, xG

)
.

Indeed, the equation ζ ′(x) = 0 is equivalent to

ξ(x) ≡
[
f ′(x)− 1

]2
+ [f(x)− x] f ′′(x) = 0.

Let’s show that ξ(x) = 0 has a unique solution. Focus first on its derivative:

ξ′(x) = 2 [f ′(x)− 1] f ′′(x) + [f ′(x)− 1] f ′′(x) + [f(x)− x] f ′′′(x)

= 3
(
αAxα−1 − 1

)
α(α− 1)Axα−2 +

(
Axα − x

)
α(α− 1)(α− 2)Axα−3

= α(α− 1)Axα−3
[
3
(
αAxα − x

)
+ (α− 2)

(
Axα − x

)]
= −2α(1− α)Axα−2

[
(2α− 1)Axα−1 − 1 + α

2

]
.

Clearly, the equation (2α−1)Axα−1− (1 + α) /2 = 0 has a unique positive solution:

x̃ =

[
2(2α− 1)

1 + α
A

] 1
1−α

< (αA)
1

1−α = xG,

since 0 < α < 1.

Note that ξ′(x) < 0 if x ∈ (0, x̃), and ξ′(x) > 0 if x ∈
(
x̃, xG

)
. This implies

ξ(x̃) < ξ
(
xG
)
< 0.

Importantly, because of this inequality, ξ(x) = 0 has no solution in the interval(
x̃, xG

)
.

Combining the monotonicity of ξ in the interval (0, x̃) with limx→0 ξ(x) = ∞, the

equation ξ(x) = 0 has a unique solution in (0, x̃).

Thus, the equation ζ ′(x) = 0 has unique solution in the interval
(
0, xG

)
, say x̂. The

uniqueness of this solution ensures that the function ζ is increasing in (0, x̂) and

decreasing in
(
x̂, xG

)
. Hence, ζ is a single-peaked function.

It is easy to see that ζ(0) = ζ
(
xG
)
= 0 and δb (f(x)− x) f ′(x) = 1 if and only if

ζ(x) = b.

Let bM ≡ maxx∈[0,xG] ζ(x) and x̂ ≡ argmaxx∈[0,xG] ζ(x).

If b > bM , the equation ζ(x) = b has no solution. Since ζ is a single-peaked

function, if 0 < b < bM , equation ζ(x) = b has exactly two solutions xs(b) < xs(b),

with the property that ζ(x) < b if 0 < x < xs(b) or x > xs(b), and ζ(x) > b if

xs(b) < x < xs(b). Moreover, while xs(b) is increasing with respect to b, xs(b) is
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decreasing. More precisely, we have

lim
b→0

xs(b) = 0 and lim
b→0

xs(b) = xG,

lim
b→bM

xs(b) = x̂ and lim
b→bM

xs(b) = x̂.

Remark that δb
(
f(x)−x

)
f ′(x) < 1 if x < xs(b) or x > xs(b), and δb

(
f(x)−x

)
f ′(x) >

1 if xs(b) < x < xs(b). QED

7.12 Proof of Proposition 3.1

The proof of Proposition 3.1 is long, and require some repetitive arguments. There-

fore we present them in a preparatory lemma.

Lemma 7.1. 1. Fix x0 > 0. Let b > 0 and a sequence of parameters (bn)
∞
n=0 that

converges to b. For each n, let
(
xt(n)

)∞
t=0

be an optimal path of the economy

E(bn) starting from x0. If, for any n,
(
xt(n)

)∞
t=0

is non-decreasing, then the

economy E(b) has a non-decreasing optimal path starting from x0.

2. Fix x0 > 0. Let b > 0 and a sequence of parameters (bn)
∞
n=0 that converges to

b. For each n, let
(
xt(n)

)∞
t=0

be an optimal path of the economy E(bn) starting
from x0. If, for any n,

(
xt(n)

)∞
t=0

is non-increasing, then the economy E(b)
has a non-increasing optimal path starting from x0.

3. There exists b̂ > 0 such that for any b ∈ (0, b̂), the economy E(b) exhibits a

strictly increasing optimal path.

Proof of Lemma 7.1

Part 1. The compactness of the set Π(x0) with respect to the product topology

entails the existence of a subsequence
(
bnk

)∞
k=0

such that the sequence of optimal

paths
(
(xt(bnk

))∞t=0

)∞
k=0

converges to a sequence
(
x̃t
)∞
t=0

in this topology. Clearly,(
x̃t
)∞
t=0

is non-decreasing.

Take now any feasible path
(
xt
)∞
t=0

∈ Π(x0) and notice that

W bnk (x0, x1(bnk
), x2(bnk

), . . .) ≥ W bnk (x0, x1, x2, . . .).

Let k goes to infinity to obtain

W b(x0, x̃1, x̃2, . . .) ≥ W b(x0, x1, x2, . . .).
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Since
(
xt
)∞
t=0

is arbitrary, the sequence
(
x̃t
)∞
t=0

is an optimal paths of the economy

E(b) starting from x0.

Part 2. We use exactly the same arguments to prove that the economy E(b) has a
non-increasing optimal path starting from x0.

Part 3. Assume the contrary. Then, there exists a decreasing sequence (bn)
∞
n=0

converging to zero such that, for any n, every optimal path of the economy E(bn) is
non-increasing.

We observe that for b = bn for some n ≥ 0,

V b(y) <
u
(
f(y)

)
1− δb

(
f(y)

) , (7)

for any y ∈
(
0, xG

)
. Indeed, an optimal path

(
yt
)∞
t=0

starting from y is non-

increasing. Thus, yt ≤ y, ct = f(yt)− yt+1 < f(y) for any t and

V (y) < u
(
f(y)

)
+ δb

(
f(y)

)
u
(
f(y)

)
+ δb

(
f(y)

)2
u
(
f(y)

)
+ . . . =

u
(
f(y)

)
1− δb

(
f(y)

) .
We will prove the existence of B > 0 such that∫ xs(b)

0

δb′(cy)f
′(y)

[
u
(
f(y)

)
1− δb

(
f(y)

) − u
(
f(y)− y

)
1− δb

(
f(y)− y

)] dy < B, (8)

for b = bn for some n. We have

u
(
f(y)

)
u
(
f(y)− y

) 1− δb
(
f(y)− y

)
1− δb

(
f(y)

)
=

u
(
f(y)

)
u
(
f(y)− y

) b+ f(y)

b+ f(y)− y
<

u
(
f(y)

)
u
(
f(y)− y

) f(y)

f(y)− y

=
1[

1− y
f(y)

]ρ+1 <
1[

1− xG

f(xG)

]ρ+1 .

Hence, ∫ xs(b)

0

δb′(cy)f
′(y)

[
u
(
f(y)

)
1− δb

(
f(y)

) − u
(
f(y)− y

)
1− δb

(
f(y)− y

)] dy
< B̂

∫ xs(b)

0

δb′(cy)f
′(y)

u
(
f(y)− y

)
1− δb

(
f(y)− y

)dy, (9)

where

B̂ ≡ 1[
1− xG

f(xG)

]ρ+1 − 1.
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Moreover,

B̂

∫ xs(b)

0

δb′(cy)f
′(y)

u
(
f(y)− y

)
1− δb

(
f(y)− y

)dy
= B̂

∫ xs(b)

0

b

(b+ cy)
2f

′(y)u
(
f(y)− y

)b+ cy
b

dy

= B̂

∫ xs(b)

0

f ′(y)u
(
f(y)− y

)
b+ cy

dy ≤ B̂

∫ xG

0

f ′(y)u
(
f(y)− y

)
b+ cy

dy

≤ B̂

∫ xG

0

f ′(y)u
(
f(y)− y

)
f(y)− y

dy =
B̂

ρ

∫ xG

0

f ′(y)u′
(
f(y)− y

)
dy

=
B̂

ρ

∫ xG

0

[f ′(y)− 1]u′
(
f(y)− y

)
dy +

B̂

ρ

∫ xG

0

u′
(
f(y)− y

)
dy

=
B̂

ρ
u
(
f
(
xG
)
− xG

)
+
B̂

ρ

∫ xG

0

u′(cy)dy.

Fix ŷ ∈
(
0, xG

)
such that, if y < ŷ, we have f(y)−y > y, with the consequence that

u′(cy) < u′(y).

We observe that∫ xG

0

u′(cy)dy =

∫ ŷ

0

u′(cy)dy +

∫ xG

ŷ

u′(cy)dy

<

∫ ŷ

0

u′(y)dy + u′(cŷ)

∫ xG

ŷ

dy = u(ŷ) + u′(cŷ)
(
xG − ŷ

)
.

We obtain:

B̂

∫ xs(b)

0

δb′(cy)f
′(y)

u
(
f(y)− y

)
1− δb

(
f(y)− y

)dy < B̂

ρ
u
(
f
(
xG
)
− xG

)
+
B̂

ρ

∫ xG

0

u′(cy)dy

<
B̂

ρ
u
(
f
(
xG
)
− xG

)
+
B̂

ρ

[
u(ŷ) + u′(cŷ)

(
xG − ŷ

)]
≡ B.

According to (7), (8) and (9), if b = bn for some n, we have∫ xs(b)

0

δb′(cy)f
′(y)

[
V b(y)−

u
(
f(y)− y

)
1− δb

(
f(y)− y

)] dy < B. (10)

Now, let’s prove that

lim
b→0

∫ xs(b)

0

[
δb(cy)f

′(y)− 1
] [ u′(cy)

1− δb(cy)
+

u(cy)δ
b′(cy)[

1− δb(cy)
]2
]
dy = 0. (11)

Recall that, for any b, when y < xs(b), δ
b(cy)f

′(y) < 1. Moreover, limb→0 xs(b) = 0.
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Fix ε ∈ (0, 1). For b sufficiently small, we have xs(b) < ŷ and

δb(cy) <
1

f ′(y)
<

1

f ′
(
xs(b)

) < ε

with y < xs(b) . Recall also that cy > y for y < xs(bn), since xs(b) < ŷ.

For b small enough,∫ xs(b)

0

u′(cy)

1− δb(cy)
dy <

∫ xs(b)

0

u′(cy)

1− ε
dy =

1

1− ε

∫ xs(b)

0

u′(cy)dy

<
1

1− ε

∫ xs(b)

0

u′(y)dy =
u
(
xs(b)

)
1− ε

.

Hence,

lim
b→0

∫ xs(b)

0

u′(cy)

1− δb(cy)
dy = 0. (12)

In addition, for small value of b,∫ xs(b)

0

u(cy)δ
b′(cy)[

1− δb(cy)
]2dy

<
1

1− ε

∫ xs(b)

0

u(cy)δ
b′(cy)

1− δb(cy)
dy =

1

1− ε

∫ xs(b)

0

u(cy)
b

(b+cy)2

b
b+cy

dy

=
1

1− ε

∫ xs(b)

0

u(cy)

b+ cy
dy ≤ 1

1− ε

∫ xs(b)

0

u(cy)

cy
dy

=
1

(1− ε)ρ

∫ xs(b)

0

u′(cy)dy <
1

(1− ε)ρ

∫ xs(b)

0

u′(y)dy <
u
(
xs(b)

)
(1− ε)ρ

.

Hence,

lim
b→0

∫ xs(b)

0

u(cy)δ
b′(cy)[

1− δb(cy)
]2dy = 0. (13)

Combining (12) and (13) with δb(cy)f
′(y) < 1 for y < xs(b), we obtain (11).

Now, let’s prove that

lim
b→0

∫ xs(b)

xs(b)

[
δb(cy)f

′(y)− 1
] [ u′(cy)

1− δb(cy)
+

u(cy)δ
b′(cy)[

1− δb(cy)
]2
]
dy = ∞. (14)

Indeed, fixing 0 < x∗ < x∗ < xG and b̂ small enough such that, for b < b̂, we have

0 < xs(b) < x∗ < x∗ < xs(b) < xG,
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we obtain∫ xs(b)

xs(b)

[
δb(cy)f

′(y)− 1
] [ u′(cy)

1− δb(cy)
+

u(cy)δ
b′(cy)[

1− δb(cy)
]2
]
dy

>

∫ x∗

x∗

[
δb(cy)f

′(y)− 1
] [ u′(cy)

1− δb(cy)
+

u(cy)δ
b′(cy)[

1− δb(cy)
]2
]
dy

>

∫ x∗

x∗

[
δb̂(cy)f

′(y)− 1
] [ u′(cy)

1− δb(cy)
+

u(cy)δ
b′(cy)[

1− δb(cy)
]2
]
dy.

For every y ∈ (x∗, x
∗), limb→0 δ

b(cy) = 1. Therefore,

lim
b→0

∫ x∗

x∗

[
δb̂(cy)f

′(y)− 1
] [ u′(cy)

1− δb(cy)
+

u(cy)δ
b′(cy)[

1− δb(cy)
]2
]
dy = ∞.

and we get (14).

Using (10), (11) and (14), we find limn→∞ ϕ(bn) = ∞.

Hence, for n sufficiently large, ϕ(bn) > 0. By Lemma 2.4, there exists x(bn) <

xs(bn) such that any optimal path starting from x0 > x(bn) converges to x
s(bn): a

contradiction with the hypothesis that every optimal path of E(bn) is non-increasing.
Thus, Part 3 is proven. QED

Let us return to the proof of Proposition 3.1.

First, we will prove the existence of b such that E(b) has a poverty trap. Assume the

contrary. Then, for any fixed b, either every optimal path converges to the origin,

or every optimal path converges to a positive steady state.

Although we cannot calculate explicit critical values of the fundamentals, we can

prove the existence of values that generate a poverty trap.

In this respect, we introduce an auxiliary function:

ϕ(b) ≡
∫ xs(b)

0

[
δb(cy)f

′(y)− 1
] [ u′(cy)

1− δb(cy)
+

u(cy)δ
b′(cy)[

1− δb(cy)
]2
]
dy

−
∫ xs(b)

0

δb′(cy)f
′(y)

[
V b(y)− u(cy)

1− δb(cy)

]
dy. (15)

When b = bM , both xs(b) and x
s(b) both equal to x̂. In this case, δb(cy)f

′(y) ≤ 1

for any y. Then, ϕ
(
bM
)
< 0. By Lemma 2.4, for b close enough to bM , there

exists x(b) > 0 such that every optimal path starting from x0 < x(b) converges to

the origin. Since E(b) has no poverty trap, every optimal path of these economies

converges to the origin for any value of x0.
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Let’s summarize the results we have obtained so far, assuming no poverty trap for

any b ∈
(
0, bM

)
. First, there exists b such that every optimal path in the economy

E(b) converges to a positive steady state. Second, ϕ
(
bM
)
< 0 and, for any b close

enough to bM , every optimal path of the economy E(b) converges to the origin.

Let us take a closer look at the second result: if we fix b close enough to bM , then,

for any b′ ∈
(
b, bM

)
, every optimal path of the economy E(b′) converges to the origin.

Let b∗ the infimum of values b such that, for any b < b′ < bM , any optimal path of

the economy E(b′) converges to the origin. As a consequence of point (3) in Lemma

7.1, b∗ > 0.

Fix r > 0 such that 0 < b∗− r < b∗+ r < bM and x0 < xs (b
∗ − r). By the definition

of b∗, there exists a sequence
(
bn
)∞
n=0

converging to b∗ with bn ∈ (b∗ − r, b∗) for

any n such that, starting from x0, any optimal path
(
xt(bn)

)∞
t=0

of the economy

E(bn) converges to a positive steady state. There exists also a sequence
(
bn
)∞
n=0

with bn ∈ (b∗, b∗ + r) converging to b∗ such that, starting from x0, any optimal path(
xt(bn)

)∞
t=0

of the economy E(bn) converges to the origin.

Since x0 is smaller than any possible steady state of E(bn) and E(bn), the optimal

path is strictly increasing in the former case, and strictly decreasing in the latter.

By Lemma 7.1, starting from x0, the economy E(b∗) has a non-increasing optimal

path
(
xt
)∞
t=0

, and a non-decreasing optimal path
(
xt
)∞
t=0

, both starting from x0.

According to Proposition 2.5, since x0 is smaller than any positive candidate for a

steady state of the economy E(b∗), these sequences are strictly monotonic. The first

sequence is strictly decreasing and converges to the origin. The second sequence is

strictly increasing. Therefore, x0 is the poverty trap of the economy E(b∗). Recalling
that we have chosen x0 arbitrarily less than xs(b

∗ − r), we reach a contradiction:

each x0 < xs(b
∗ − r) is a poverty trap of E(b∗).

This contradiction comes from the hypothesis that, for any b ∈
(
0, bM

)
, the economy

E(b) has no poverty trap. Therefore, the exists some b such that the economy E(b)
exhibits a poverty trap. In other words, C ̸= ∅.

We prove the following claim: there exists b ∈ C and ε > 0 such that for any

b′ ∈ (b− ε, b), the economy E(b′) has a poverty trap.

Assume that the claim is false and choose b ∈ C and x0 > 0 that is smaller than both

the poverty trap of E(b) and xs(b). Observe that there exists ε > 0 small enough such

that for b′ ∈ (b−ε, b), every optimal path of E(b′) starting from x0 is non-increasing.
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Indeed, the contrary implies the existence of an increasing sequence
(
bn
)∞
n=0

that

converges to b, and strictly increasing sequences
(
xt(n)

)∞
t=0

that are optimal path

of the economy E(bn) starting from x0. By Lemma 7.1, this entails the existence

of an optimal path of the economy E(b) starting from x0 that is non-decreasing, a

contradiction with the choice of x0.

Hence, there exists ε > 0 small enough such that for b′ ∈ (b − ε, b), every optimal

path of E(b′) starting from x0 is non-increasing. Under the hypothesis that the claim

is false, there exists a sequence (bn)
∞
n=0 converging to b, with bn ∈ (b− ε, b) for any

n, such that E(bn) has no poverty trap and each optimal path of these economies

starting from x0 is non-increasing. Thus, each optimal path of these economies is

decreasing and converges to the origin. According to Lemma 7.1, for any x0 > 0,

the economy E(b) has an optimal path starting from x0 that is non-increasing.

We will prove that every optimal path of E(b) is non-increasing.8 Assume the con-

trary: there exists x̃0 > 0 and an optimal path starting from x̃0 that is strictly

increasing and converges to x∗. By the monotonicity of the optimal policy corre-

pondence, there exists a strictly increasing optimal path that converges to x∗ from

x′0 ∈ (x̃0, x
∗). Moreover, x̃0 is not a steady state and x̃0 < xs(b), the largest candi-

date for a steady state. The level x∗ is either xs(b) or x
s(b).

Consider a non-increasing optimal path starting from x̃0. Since x̃0 is not a steady

state, by Proposition 2.5, this sequence is strictly decreasing. If this sequence con-

verges to xs(b), any member belongs to the interval (xs(b), x
s(b)) with δ (f(x)− x) f ′(x) >

1, in contradiction to Lemma 2.2.

Hence, the sequence (x̃t)
∞
t=0 converges to the origin. In other words, (0, x̃0) is a

poverty trap of E(b). Since the argument leading to this conclusion can be applied

for any x′0 ∈ (x̃0, x
∗), we arrive at a contradiction.

Therefore, under the assumption that the claim is false, we conclude that, for any

b ∈ C, every optimal path of economy E(b) is non-increasing. Lemma 7.1 ensures

that bm ≡ inf C > 0.

Let (bn)
∞
n=0 be a sequence of parameters in C converging to bm. We do not need the

strict monotonicity of the sequence: if bm ∈ C, we can simply fix bn ≡ bm for any n.

Since every optimal path of E(bn) is non-increasing, by Lemma 7.1, for every x0 > 0,

8 The poverty trap is xs(b): optimal paths starting from x0 < xs(b) converge to the origin, while

those starting from x0 > xs(b) converge to xs(b).
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there exists a non-increasing optimal path of E (bm) starting from x0.

Let b∗ the infimum of values b with the following property: for each x0 > 0 and any

b′ such that b ≤ b′ ≤ bm, there exists an optimal path of E(b′) starting from x0 that

is non-increasing.

We observe that b∗ > 0. This is clear if b∗ = bm. Focus instead on the case b∗ < bm.

Then, for any b ∈ (b∗, b
m) and any 0 < x0 < xs(b), there exists an optimal path of

E(b) starting from x0 that is non-increasing. The choice of x0 ensures that this path

converges to the origin. By the definition of bm, the economy E(b) has no poverty

trap. Hence, every optimal path of E(b) is decreasing and converges to the origin.

Since this is true for any b ∈ (b∗, b
m), by Lemma 7.1, we conclude that b∗ > 0.

By the choice of b∗ and Lemma 7.1, for any x0 < xs(b∗), there exists a non-increasing

optimal path starting from x0. The choice of x0 guarantees that this path converges

to the origin.

Choose r ∈ (0, b∗) and 0 < x0 < xs (b∗ − r). By the definition of b∗, there exists a

strictly increasing sequence
(
bn
)∞
n=0

with bn ∈ (b∗− r, b∗) for any n and limn→∞ bn =

b∗, such that the economy E(bn) has no poverty trap. Since x0 < xs(bn), starting

from x0, any optimal path
(
xt(bn)

)∞
t=0

of the economy E(bn) is strictly increasing.

Hence, there exists a non-decreasing optimal path of E (b∗) starting from x0. In

other words, starting from every x0 < xs(b∗ − r), there exists a non-decreasing

optimal path. Recall that there exists also a decreasing optimal path converging to

the origin. This implies that x0 is a poverty trap. Since the choice of x0 < xs(b∗−r)
was arbitrary, we arrive at a contradiction.

The claim is true and there exist b ∈ C and ε > 0 such that (b − ε, b) ⊂ C. Simply

choose b ≡ b− ε and b ≡ b. QED

7.13 Proof of Proposition 4.1

The proof is standard. We follow exactly the same arguments used in the proofs of

Propositions 2, 3, 4 and Theorems 1, 2 in Le Van and Morhaim (2002). QED
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7.14 Proof of Proposition 4.2

The proofs of Parts (1) and (2) are also standards. For part (3), we use the super-

modularity of the function u
(
f(x)− y

)
. We observe that

∂2

∂x∂y
u
(
f(x)− y

)
= −u′′

(
f(x)− y

)
f ′(x) > 0.

Assume that y′ < y. We have

u
(
f(x)− y

)
+ δ(y)V (y) ≥ u

(
f(x)− y′

)
+ δ(y′)V (y′),

u
(
f(x′)− y′

)
+ δ(y′)V (y′) ≥ u(f(x′)− y

)
+ δ(y)V (y).

Summing these inequalities, we get

u
(
f(x)− y

)
+ u
(
f(x′)− y′

)
≥ u

(
f(x)− y′

)
+ u
(
f(x′)− y

)
,

a contradiction with the supermodularity property of u
(
f(x)− y

)
. QED

7.15 Proof of Proposition 4.3

Part (1). We remind that 0 < xt+1 < f(xt) for any t ≥ 0. Taking the derivative of

the intertemporal utility function with respect to xt+1, we obtain

u′
(
f(xt)− xt+1

)
= δ′(xt+1)u

(
f(xt+1)− xt+2

)
+ δ(xt+1)u

′(f(xt+1)− xt+2

)
f ′(xt+1)

+ δ′(xt+1)δ(xt+2)V (xt+2) = δ(xt+1)u
′(f(xt+1)− xt+2

)
f ′(xt+1) + δ′(xt+1)V (xt+1).

Part (2). We note that the right-hand side of Euler equation (3) is strictly increasing

with respect to xt+2. Hence, for t ≥ 1, φ(xt) is a singleton. QED

7.16 Proof of Proposition 4.4

Replacing xt, xt+1 and xt+2 by x∗ in the Euler equation (3), we obtain Part (1). To

prove part (2), let xt+1 = x∗. Replacing xt+1, xt+2 by x∗ in the Euler equation gives

u′
(
f(xt)− x∗

)
= δ(x∗)u′

(
f(x∗)− x∗

)
f ′(x∗) + δ′(x∗)V (x∗).

This implies xt = x∗. Hence, if xt ̸= x∗, the next state xt+1 ̸= x∗.

The monotonicity property is a direct consequence of Proposition 4.2. QED
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7.17 Proof of Proposition 4.5

Before proving the proposition, we introduce an auxiliary function ψ(y):

ψ(y) ≡
[
δ(y)f ′(y)− 1

]
u′
(
f(y)− y

)
+
δ′(y)u

(
f(y)− y

)
1− δ(y)

.

Part (1). Clearly, ψ(y) > 0 if and only if

δ(y)f ′(y) > 1−
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]
u′
(
f(y)− y

) .
We have ψ(y) > 0 for 0 < y < x̂. Assume the existence of an optimal path

(xt)
∞
t=0 starting from x0 > 0 and converging to zero. Monotonicity ensures that this

sequence is strictly decreasing. There exists some T such that xt < x̂ for any t ≥ T .

We will prove that, if t ≥ T ,

u
(
f(xt)− xt

)
1− δ(xt)

> u
(
f(xt)− xt+1

)
+ δ(xt+1)

u
(
f(xt+1)− xt+1

)
1− δ(xt+1)

.

Define

ζ(y) ≡ u
(
f(xt)− y

)
+ δ(y)

u
(
f(y)− y

)
1− δ(y)

.

ζ is strictly increasing in (xt+1, xt). Indeed,

ζ ′(y) = −u′
(
f(xt)− y

)
+ δ′(y)

u
(
f(y)− y

)
1− δ(y)

+ δ(y)

[
1− δ(y)

]
u′
(
f(y)− y

)
[f ′(y)− 1] + δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
> −u′

(
f(y)− y

)
+ δ′(y)

u
(
f(y)− y

)
1− δ(y)

+ δ(y)

[
1− δ(y)

]
u′
(
f(y)− y

)
[f ′(y)− 1] + δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
=

ψ(y)

1− δ(y)
> 0.

Hence, ζ is strictly increasing in (xt+1, xt) and we have ζ(xt) > ζ(xt+1), which implies

u
(
f(xT )− xT

)
1− δ

(
f(xT )− xT

) > u
(
f(xT )− xT+1

)
+ δ(xT+1)

u
(
f(xT+1)− xT+1

)
1− δ(xT+1)

> u
(
f(xT )− xT+1

)
+ δ(xT+1)u

(
f(xT+1)− xT+2

)
+ δ(xT+1)δ(xT+2)

u
(
f(xT+2)− xT+2

)
1− δ(xT+2)

> . . . ≥ V (xT ),
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a contradiction.

Part (2). Using similar arguments, we can prove that, if the optimal path (xt)
∞
t=0 is

increasing, the function ζ is decreasing in (xt, xt+1), which leads to a contradiction.

QED

7.18 Proof of Corollary 4.1

Apply the proof of Proposition 4.5. QED

7.19 Proof of Proposition 4.6

Part (1). Assume that there exists an increasing optimal path
(
xt
)∞
t=0

starting from

x0 with limit x∗. For any t ≥ 0, we have

V (xt+1)− V (xt) ≥ u
(
f(xt+1)− xt+1

)
+ δ(xt+1)V (xt+1)− u

(
f(xt)− xt+1

)
− δ(xt+1)V (xt+1)

= u
(
f(xt+1)− xt+1

)
− u
(
f(xt)− xt+1

)
=

∫ xt+1

xt

u′
(
f(y)− xt+1

)
f ′(y)dy

≥
∫ xt+1

xt

u′
(
f(y)− y

)
f ′(y)dy.

This implies

V (x∗)− V (x0) =
∞∑
t=0

[
V (xt+1)− V (xt)

]
≥

∞∑
t=0

∫ xt+1

xt

u′
(
f(y)− y

)
f ′(y)dy

=

∫ x∗

x0

u′
(
f(y)− y

)
f ′(y)dy.

On the other hand,

V (x∗)− V (x0) ≤
u
(
f(x∗)− x∗

)
1− δ(x∗)

−
u
(
f(x0)− x0

)
1− δ(x0)

=

∫ x∗

x0

[
1− δ(y)

]
u′
(
f(y)− y

)
[f ′(y)− 1] + δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2 dy.

This implies∫ x∗

x0

[
1− δ(y)

]
u′
(
f(y)− y

)
[f ′(y)− 1] + δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2 dy ≥
∫ x∗

x0

u′
(
f(y)−y

)
f ′(y)dy.

Taking the left-hand side minus the right-hand side, we get∫ x∗

x0

([
δ(y)f ′(y)− 1

]u′(f(y)− y
)

1− δ(y)
+
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
)
dy ≥ 0,
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a contradiction.

Part (2). Using similar arguments, we can prove that assuming a decreasing optimal

path starting from x0 leads to a contradiction. QED

7.20 Proof of Corollary 4.2

Part (1). Choose x < xs close enough to xs such that∫ x

0

([
δ(y)f ′(y)− 1

]u′(f(y)− y
)

1− δ(y)
+
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
)
dy > 0,

and apply Proposition 4.6.

Part (2). Choose x < xs close enough to 0 such that∫ xs

x

([
δ(y)f ′(y)− 1

]u′(f(y)− y
)

1− δ(y)
+
δ′(y)u

(
f(y)− y

)[
1− δ(y)

]2
)
dy < 0,

and apply Proposition 4.6. QED

7.21 Proof of Proposition 5.1

We consider the function ζ(x) ≡ (1 + ρα)Axα − (1 + ρ)x. Clearly, (4) is equivalent

to ζ(x) = ρb. Let

x̂ ≡
(
1 + ρα

1 + ρ
A

) 1
1−α

.

The function ζ is strictly concave, with ζ(0) = ζ(x̂) = 0. Define

bM ≡ 1

ρ
max
x∈[0,x̂]

ζ(x).

If b > bM , then ζ(x) < ρb for any x ≥ 0. If 0 < b < bM , then the equation

ζ(x) = ρb has exactly two positive solutions: xs(b) < xs(b). The first one is strictly

increasing with respect to b, while the second one is strictly decreasing. We obtain

limb→0 xs(b) = 0 and limb→0 x
s(b) = x̂.

Let us denote the economy associated to the discount function δb by E(b), and the

corresponding intertemporal utility function by W b(x0, x1, x2, . . .).

Reminding that, if b = bM , for any y ∈ [0, x̂], we have

δb(y)f ′(y) ≤ 1−
δb′(y)u

(
f(y)− y

)[
1− δb(y)

]
u′
(
f(y)− y

) ,
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which is equivalent to

[
δb(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
+
δb′(y)u

(
f(y)− y

)[
1− δb(y)

]2 ≤ 0.

Consider

Φ(b) ≡
∫ xs(b)

0

([
δb(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
+
δb′(y)u

(
f(y)− y

)[
1− δb(y)

]2
)
dy.

Clearly, Φ
(
bM
)
< 0.

At this stage of the proof, we need to introduce a preparatory Lemma.

Lemma 7.2. 1. Fix x0 > 0. Let b > 0 and a sequence of parameters (bn)
∞
n=0 that

converges to b. For each n, let
(
xt(n)

)∞
t=0

be an optimal path of the economy

E(bn) starting from x0. If, for any n,
(
xt(n)

)∞
t=0

is non-decreasing, then the

economy E(b) has a non-decreasing optimal path starting from x0.

2. Fix x0 > 0. Let b > 0 and a sequence of parameters (bn)
∞
n=0 that converges to

b. For each n, let
(
xt(n)

)∞
t=0

be an optimal path of the economy E(bn) starting
from x0. If, for any n,

(
xt(n)

)∞
t=0

is non-increasing, then the economy E(b)
has a non-increasing optimal path starting from x0.

3. For b > 0 close enough to zero, we have Φ(b) > 0.

Proof of Lemma 7.2

Part (1) and (2): the proof follows exactly the same arguments as in the proof of

Lemma 7.1.

We consider Part (3). We will prove that, for b close enough to zero, Φ(b) > 0.

Fix ε ∈ (0, 1) and ŷ such that, if y < ŷ, we have f(y)− y > y. For b small enough,

xs(b) < ŷ and δb(y) < 1/f ′(y) < ε for any y < xs(b).

We have for small b,∫ xs(b)

0

u′
(
f(y)− y

)
1− δb(y)

dy <

∫ xs(b)

0

u′
(
f(y)− y

)
1− ε

dy

=
1

1− ε

∫ xs(b)

0

u′
(
f(y)− y

)
dy

<
1

1− ε

∫ xs(b)

0

u′(y)dy =
u
(
xs(b)

)
1− ε

.
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and, hence,

lim
b→0

∫ xs(b)

0

u′
(
f(y)− y

)
1− δb(y)

dy = 0. (16)

Moreover,∫ xs(b)

0

δb′(y)u
(
f(y)− y

)[
1− δb(y)

]2 dy

<
1

1− ε

∫ xs(b)

0

δb′(y)u
(
f(y)− y

)
1− δb(y)

dy =
1

1− ε

∫ xs(b)

0

b
(b+y)2

u
(
f(y)− y

)
b

b+y

dy

=
1

1− ε

∫ xs(b)

0

u
(
f(y)− y

)
b+ y

dy ≤ 1

1− ε

∫ xs(b)

0

u
(
f(y)

)
y

dy

=
Aρ

1− ε

∫ xs(b)

0

yρα−1dy =
Aρ

(1− ε)ρα

∫ xs(b)

0

(yρα)′ dy =
Aρ
[
xs(b)

]ρα
(1− ε)ρα

.

Thus,

lim
b→0

∫ xs(b)

0

δb′(y)u
(
f(y)− y

)[
1− δb(y)

]2 dy = 0. (17)

The limits in (16) and (17), jointly with δb(y)f ′(y) < 1 for y < xs(b), imply

lim
b→0

∫ xs(b)

0

([
δb(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
+
δb′(y)u

(
f(y)− y

)[
1− δb(y)

]2
)
dy = 0. (18)

We can now show that

lim
b→0

∫ xs(b)

xs(b)

([
δb(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
+
δb′(y)u

(
f(y)− y

)[
1− δb(y)

]2
)
dy = ∞. (19)

Fix 0 < x∗ < x∗ < xG (solution to f ′(x) = 1) and b̂ small enough such that, for

b < b̂,

0 < xs(b) < x∗ < x∗ < xs(b) < x̂,

and δb̂(y)f ′(y) > 1 for any x∗ ≤ y ≤ x∗. We obtain∫ xs(b)

xs(b)

([
δb(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
+
δb′(y)u

(
f(y)− y

)[
1− δb(y)

]2
)
dy

>

∫ x∗

x∗

([
δb(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
+
δb′(y)u

(
f(y)− y

)[
1− δb(y)

]2
)
dy

>

∫ x∗

x∗

[
δb̂(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
dy.
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For any y ∈ (x∗, x
∗), limb→0 δ

b(y) = 1. Hence,

lim
b→0

∫ x∗

x∗

[
δb̂(y)f ′(y)− 1

]u′(f(y)− y
)

1− δb(y)
dy = ∞.

From (18) and (19), we have limb→0Φ(b) = ∞. Thus, there exists b small enough

such that Φ(b) > 0. QED

We can now return to the proof of Proposition 5.1.

First, we show the existence of b such that the economy E(b) has a poverty trap.

Assume the contrary. Remind that, if b is close enough to bM , we have Φ(b) < 0.

By Proposition 4.6, there are optimal paths converging to the origin. Then, any

optimal path of E(b) converges to the origin, otherwise a poverty trap exists.

Conversely, if b is close enough to zero, we find Φ(b) > 0. By Proposition 4.6, there

are optimal paths converging to a positive steady state. Then, every optimal path

of E(b) converges to a positive steady state.

Let b∗ be the infimum of values b with the following property: for any b < b′ < bM ,

every optimal path of the economy E(b′) converges to the origin. By Lemma 7.2,

b∗ > 0.

From now on, we can apply the arguments in Section 3, taking care to replace

Lemma 7.1 by Lemma 7.2, and obtain a contradiction. These arguments also imply

the existence of b < b such that, for any b ∈ (b, b), the economy E(b) experiences a
poverty trap. QED
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