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Abstract

We study a discrete-time optimal growth model with endogenous discounting.

The discount factor may depend on both consumption and the capital stock, and

intertemporal utility is modeled as a discounted sum of instantaneous utilities,

with the sum of discount factors equal to one. We show that this specification

preserves the invariance of optimal paths and steady states to affine transfor-

mations of the instantaneous utility function, providing a general and flexible

framework for analyzing economic dynamics under endogenous time preference.

We prove that optimal capital paths are monotonic, and steady states depend on

initial conditions. We also show the robustness of poverty traps under endogenous

discounting: in several examples, for a set of parameters with positive measure,

the optimal path converges to a positive steady state only if the initial capital

stock exceeds a critical level and otherwise converges to the origin.
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1. Introduction

Time preference is widely recognized as a key driver of economic growth. In classi-

cal optimal capital accumulation models, intertemporal trade-offs between current

and future consumption are governed by a constant discount factor reflecting the

decision maker’s degree of patience. However, the relationship between patience and

growth is reciprocal: consumption flows and wealth can influence discount factors,

suggesting that time preference is endogenous. A substantial literature has exam-

ined the dynamic properties of economies with endogenous discounting, in which the

discount factor depends either on consumption or on the capital stock (see, among

others, Uzawa, 1968; Drugeon, 2000; Erol et al., 2011; Bouché, 2017).

An important implication of endogenous discounting is that the level of the instanta-

neous utility function enters directly into the characterization of optimal paths (see,

e.g., Schumacher, 2011, for a discussion). This feature generates several anomalies.

For instance, adding a constant to the utility function, which in many other settings

leaves consumption decisions unaffected, alters optimal paths and, when discount-

ing depends on capital, can even change steady states. Moreover, the sign of the

utility acquires an unexpected behavioral interpretation: when utility is negative,

the decision maker may optimally choose to become less patient.

In this paper, we propose a general framework for endogenous discounting that (i)

allows the discount factor to depend simultaneously on consumption and the capital

stock, and (ii) eliminates the anomalies described above. In our setting, optimal

paths and steady states are invariant to affine transformations of the instantaneous

utility function, enabling robust conclusions about the dynamics of optimal paths. In

particular, we show that any optimal capital path is monotonic, and the steady state

to which it converges depends on the initial capital stock, providing a theoretical

basis for studying poverty traps driven exclusively by endogenous time preference.

Specifically, we consider a discrete-time optimal growth model where the preferences

over feasible capital paths {xt}∞t=0 are represented by a recursive intertemporal utility

function of the form

W (xt, xt+1, . . .) =
[
1−δ(xt, xt+1)

]
u
(
f(xt)−xt+1

)
+δ(xt, xt+1)W (xt+1, xt+2, . . .) . (1)

Here, f(x) is a standard neoclassical production function, u(c) is an instantaneous

utility function of consumption, and consumption is determined as ct = f(xt)−xt+1.
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Intertemporal utility function (1) deserves several comments. First, the discount

factor between any two periods t and t+ 1, δ(xt, xt+1), is not constant but depends

on the capital path. Our general specification encompasses many interesting and rel-

evant cases. In particular, when δ(xt, xt+1) = δb (f(xt)− xt+1), discounting depends

on current consumption. When defined as δ(xt, xt+1) = δp(xt), discounting depends

on the current capital stock, while δ(xt, xt+1) = δf (xt+1) implies that discounting

depends on the future capital stock.

Second, we assume that δ(xt, xt+1) is non-decreasing in its first argument and non-

increasing in its second argument; that is, the discount factor is higher when cur-

rent consumption or capital is higher relative to future capital. This assumption

reflects the common intuition that the rich are more patient than the poor, which

is supported by numerous empirical and experimental studies.1 A similar intu-

ition emerges from theoretical models of investment in patience (e.g., Becker and

Mulligan, 1997; Stern, 2006), which suggest that the rich devote more resources

to overcoming their own weaknesses and, as a result, are rationally less impatient.

Also, it is consistent with the observation that wealth is positively correlated with

lower mortality rates, thereby increasing the subjective discount factor through the

probability of surviving.

Third, we define recursive intertemporal utility as a convex combination of the in-

stantaneous utility from current consumption, u(f(xt)−xt+1), and the utility derived

from the future consumption path, with the sum of the weights equal to 1 — even

when the recursion extends to infinity. Several recent studies (e.g., Wakai, 2008;

Chambers and Echenique, 2018; Drugeon et al., 2019; Drugeon and Ha-Huy, 2022),

axiomatizing intertemporal choice, put forward the argument that when a decision

maker chooses among multiple discount factors, any relevant criterion for evaluating

intertemporal utility streams should leave the sum of discount factors equal 1.

Note that when the discount factor δ is constant, criterion (1) reduces to the in-

1 Lawrance (1991) used U. S. panel data to show that subjective discount rates are 3–5 p.p.

higher for households with low permanent incomes than for those with high permanent incomes.

Samwick (1998) estimated the distribution of discount rates from U. S. wealth data and found that

discount rates decline with income. Harrison et al. (2002) reported results from a field experiment

in Denmark confirming that higher-income individuals have significantly lower discount rates.

Dohmen et al. (2010), in a laboratory experiment in Germany, found that, controlling for other

important characteristics, the higher the income, the lower the experimental measure of impatience.
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tertemporal utility function of the standard Ramsey model:

W (x0, x1, . . .) = (1− δ)
∞∑
t=0

δtu(f(xt)− xt+1) .

In this case, the term (1 − δ) can be ignored, and the sum of discount factors has

no effect on the optimal path. By contrast, under endogenous discounting, as we

show below, a system of weights summing to 1 plays a crucial role, ensuring that

optimal paths remain unchanged when a constant is added to u. This is funda-

mentally different to existing endogenous discounting models, which do not employ

axiomatically relevant normalized discount factors and in which both the level and

the sign of u have a significant impact on the optimal path.

For the optimal growth model with the objective function given by (1), we prove

the existence of an optimal path starting from any initial capital stock. We show

that every optimal path satisfies the Euler equations, which are invariant to affine

transformations of the instantaneous utility function.

We characterize the value function and show that it is the unique solution to the Bell-

man functional equation, finite, continuous, and differentiable almost everywhere.

Moreover, the (at most countable) set of initial capital stocks from which the op-

timal path is not unique coincides exactly with the set of points where the value

function is not differentiable. We further note that, once initiated, all optimal paths

are unique: the continuation of every optimal path (its tail starting from period 1)

is uniquely determined.

We prove that the optimal policy correspondence is monotone, which implies that

optimal paths are monotonic. Unless starting from a steady state, an optimal path

is either strictly increasing and converges to a positive steady state or strictly de-

creasing and converges to either the origin or a positive steady state.

The monotonicity of optimal paths allows us to study the possibility of poverty

traps in economies with endogenous discounting. A poverty trap corresponds to the

existence of a critical capital level such that, if the initial capital stock is below this

threshold, the optimal path converges to the origin, while if the initial capital stock

is above the threshold, the optimal path converges to a positive steady state.

We show that when discounting depends only on future capital, poverty traps cannot

arise: either every optimal path converges to the origin, or every optimal path

converges to a unique positive steady state. By contrast, when discounting depends
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on current capital or consumption, we demonstrate that in economies with isoelastic

utility and Cobb–Douglas technology, a critical level exists for a positive measure

set of parameter values. Thus, our results suggest that poverty traps are far from

rare under endogenous discounting.

This paper contributes to several strands of economic literature. First, it ad-

vances the analysis of poverty traps. The literature identifies several mechanisms

behind poverty traps in growth models, broadly categorized as technology-related

or preference-related. A classical production-side explanation involves non-convex

technology (e.g., Dechert and Nishimura, 1983; Akao et al., 2025). In particular, an

S-shaped (convex-concave) production function naturally generates multiple steady

states and path-dependent dynamics. At small capital stocks, marginal productivity

of capital is too low to sustain accumulation, leading to convergence to the origin

or a low-level steady state. However, beyond a certain threshold, increasing returns

in the convex region foster growth until diminishing returns in the concave region

dominate, stabilizing the economy at a high-level steady state.

Among consumption-side explanations, Galor and Weil (2000) (see also Galor, 2005)

demonstrate that non-convexities in preferences (the presence of a subsistence con-

sumption level) combined with endogenous fertility (quality-quantity trade-off in

fertility decisions) generate multiple growth paths. This unified growth theory ac-

counts for both the Malthusian trap in early stages of development and the transition

to sustained economic growth in modern economies.

In this paper, we study an entirely different mechanism and relate the existence

of poverty traps to the endogeneity of time preference. We highlight the role of

discounting and show that multiple equilibria, including a poverty trap, arise in

a one-sector optimal growth model under fairly standard assumptions: a strictly

concave production function and a strictly concave objective function.

Second, this paper contributes to the analysis of optimal growth under endoge-

nous time preference. The literature generally distinguishes two main approaches,

depending on the source of endogeneity: the discount factor depends either on con-

sumption or on the capital stock.

The setting in which discounting depends on consumption captures the idea of com-

plementarity between successive consumption flows. Uzawa (1968); Epstein and

Hynes (1983); Obstfeld (1990) assume that the discount factor decreases with con-
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sumption, meaning that individuals become more impatient as they consume more

— a property known as increasing marginal impatience.2 A general result under

increasing marginal impatience is the existence of a unique steady state that is

saddle-path stable, implying that the dynamics of the model with endogenous dis-

counting resemble those of a standard Ramsey model with constant discounting.

In contrast, Das (2003) and Chakrabarty (2012) argue that decreasing marginal im-

patience, whereby individuals with higher consumption levels are more patient, is

intuitively more appealing. They show that decreasing marginal impatience leads

to multiple steady states without necessarily precluding stability, contrary to ear-

lier beliefs. Notably, when discounting depends on consumption, regardless of the

direction of marginal impatience, the instantaneous utility function appears in the

optimal paths of consumption and capital.

An alternative approach considers discounting that depends on the capital stock,

reflecting the role of wealth in shaping patience. In this case, it is common to assume

that the discount factor increases with capital: individuals become more patient as

they grow richer. Schumacher (2009); Erol et al. (2011); Strulik (2012); Bouché

(2017) study endogenous time preference depending on capital under different as-

sumptions about technology.3 They find that multiple steady states generically

exist, with the lowest one typically interpreted as a steady state of stagnation.

Importantly, in this class of models, both optimal paths and steady states are di-

rectly affected by the level and, in particular, the sign of the instantaneous utility

function. This feature gives rise to various peculiarities — for example, a negative

instantaneous utility function would imply that a higher capital stock reduces total

welfare, a result that lacks economic interpretation (see also Schumacher, 2011).

Our paper differs substantially from previous contributions. We consider a general

form of endogenous discounting that captures the dependence of the discount factor

on both consumption and the capital stock, allowing us to analyze both approaches

within a single framework. Moreover, we normalize the sum of discount factors to

one, which renders optimal paths and steady states independent of the level of the

instantaneous utility function, making our analysis more flexible and robust.

2 See also Epstein (1987) and Drugeon (1996, 2000).
3 See also Borissov (2013) for an equilibrium model where agents’ discount factors are increasing

functions of their relative wealth, and Camacho et al. (2013) for a strategic growth model where

agents receive a share of total income proportional to their wealth.
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The paper is organized as follows. Section 2 introduces the model, focusing on the

existence of an optimal path as well as the properties of the value function and the

optimal policy correspondence. Section 3 characterizes optimal paths and estab-

lishes their monotonicity. Section 4 studies poverty traps and provides examples of

the existence of a critical level of capital for specific discount functions. Section 5

concludes. All proofs are gathered in the Appendix.

2. An economy with endogenous discounting

In this section, we introduce the central object of our study, an optimal growth model

with endogenous discounting, and provide some preliminary results. We describe the

primitives of the model and discuss the assumptions on preferences, technology and

the discount function. We prove the existence of an optimal path and characterize

the properties of the value function and the optimal policy correspondence.

2.1 Fundamentals

Throughout the paper, we study the following optimization problem: given x0 > 0,

max
{ct,xt+1}∞t=0

[[
1− δ(x0, x1)

]
u(c0) +

∞∑
t=1

([
1− δ(xt, xt+1)

]
u(ct)

t−1∏
s=0

δ(xs, xs+1)

)]
,

s. t. ct + xt+1 ≤ f(xt), ct ≥ 0, xt ≥ 0, t ≥ 0 ,

(2)

where f(x) is the neoclassical production function in intensive form, u(c) is the

instantaneous utility function, and δ(x, y) is a general form of the discount function.

Let us discuss the structure of the problem and the assumptions on the primitives.

As in the classic one-sector optimal growth model, we assume that capital fully

depreciates each period, and the production function f is strictly increasing and

strictly concave:

(P1) f : R+ → R+ is twice continuously differentiable, with f(0) = 0, f ′(x) > 0,

f ′′(x) < 0, and limx→+∞ f
′(x) < 1.

The instantaneous utility function of consumption in each period, u, is strictly

concave, satisfies the Inada condition, and is bounded from below:

(U1) u : R+ → R is twice continuously differentiable, with u′(c) > 0, u′′(c) < 0,

and u′(0) = +∞.
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(U2) limc→0 u(c) > −∞.

While condition (U1) is standard in optimal growth models, condition (U2) is specific

to endogenous discounting models. Two points are important here. Claim A.1

in Appendix A shows that boundedness from below of the instantaneous utility

function is a necessary condition for the objective function in (2) to satisfy the Pareto

property. Intuitively, if u(c) is not bounded from below, the objective function in

(2) may assign a higher value to a consumption path with lower consumption values

in each period. To avoid this unreasonable situation, we assume that u(0) is finite.

Moreover, Claim A.2 in Appendix A shows that the specific structure of the objec-

tive function, namely, its form as a convex combination of the instantaneous utility

and the future intertemporal utility (that is, the sum of discount factors equals 1),

makes the solution to problem (2) independent of u(0). Thus, unlike existing en-

dogenous discounting models, we do not require instantaneous utility to be restricted

to positive values.4

Finally, the discount function δ(x, y) depends on two variables, current capital x

and future capital y. This general form encompasses the three most relevant spec-

ifications in the literature. When the discount function is defined as δ(x, y) =

δb (f(x)− y), discounting depends only on consumption. Similarly, if δ(x, y) = δp(x)

or δ(x, y) = δf (y), endogenous discounting depends only on current or future cap-

ital, respectively. We have these natural specifications in mind while retaining the

most general functional form of the discount factor.

We assume that the discount function is strictly positive for positive consumption

levels, non-decreases with current capital, non-increases with future capital and its

cross-derivative is non-negative:5

(D1) δ : R+ × R+ → [0, 1) is such that 0 < δ(x, y) < 1 for all 0 < y < f(x).

(D2) δ(x, y) is twice continuously differentiable, with δ1(x, y) ≥ 0 and δ2(x, y) ≤ 0.

(D3) δ12(x, y) ≥ 0.

Condition (D1) naturally restricts the discount factor to be positive unless the cap-

4 Endogenous discounting models often assume u(0) ≥ 0, both in continuous time (Drugeon, 1996;

Das, 2003; Schumacher, 2009; Bouché, 2017), and in discrete time (Erol et al., 2011; Chakrabarty,

2012). However, in these models, the specific choice of a positive instantaneous utility function

affects the results, whereas in our case, redefining utility as u(c)− u(0) makes no difference.
5 We denote the partial derivative with respect to the first (second) variable by the subscript 1 (2).
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ital stock is zero. Condition (D2) reflects the usual intuition that patience increases

with income and wealth: the discount factor is higher when current consumption or

capital is greater relative to future capital. This assumption is in line with empirical

evidence and is widely used in the literature (see the discussion in the Introduction).

Condition (D3) is also not restrictive. It is trivially satisfied when the discount factor

depends only on current or future capital, since the cross derivatives are zero. When

δ depends only on consumption, it is easy to verify that δ12(x, y) ≥ 0 is equivalent to

the concavity of δb (f(x)− y). Note that (D1)–(D3) always hold when δ is constant.

Furthermore, we require additional conditions relating the instantaneous utility

function to the discount function. Define the function ψ as:

ψ(x, y) ≡
[
1− δ(x, y)

][
u
(
f(x)− y

)
− u(0)

]
.

We assume that ψ(x, y) is strictly supermodular:6

(UD1) ψ12(x, y) > 0 for all 0 < y < f(x).

(UD2) The function ψ(x, 0) strictly increases with x.

Claim A.3 in Appendix A shows that these conditions are neither overly restrictive

nor counterintuitive. Condition (UD1) holds automatically if δ depends only on

current or future capital, since the cross derivatives are zero. If δ(x, y) = δb(c) with

c = f(x)− y, (UD1) is equivalent to the concavity of
[
1− δb(c)

][
u(c)−u(0)

]
, which

ensures that the objective function in (2) is strictly concave in consumption in each

period. When u(c) is bounded, condition (UD2) is equivalent to the Pareto property.

2.2 Existence of an optimal path

In what follows, we assume that (P1), (U1)–(U2), (D1)–(D3), (UD1)–(UD2) hold.

Given the initial condition x0 > 0, a capital path x = {xt}∞t=0 is said to be feasible

from x0 if 0 ≤ xt+1 ≤ f(xt) for any t. Let Π(x0) be the set of all capital paths feasible

from x0. Due to increasing monotonicity of f(x), if x0 < x′0, then Π(x0) ⊂ Π(x′0).

A consumption path c = {ct}∞t=0 is feasible from x0 if there exists x ∈ Π(x0) such

that 0 ≤ ct ≤ f(xt)− xt+1 for any t.

6 The strict supermodularity means that for x < x′ and y < y′ such that 0 < y < f(x) and

0 < y′ < f(x′), we have ψ(x, y) + ψ(x′, y′) > ψ(x, y′) + ψ(x′, y). A sufficient condition for

supermodularity is that the cross derivative is positive. See Amir (1996, 2005) for more details.
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By (U1) and (D1), constraints in problem (2) are binding at the optimum. Introduce

the function W defined on the set of all feasible sequences as

W (x) =
[
1−δ(x0, x1)

]
u(f(x0)−x1)+

∞∑
t=1

([
1− δ(xt, xt+1)

]
u(f(xt)− xt+1)

t−1∏
s=0

δ(xs, xs+1)

)
.

Then the problem (2) is equivalent to the following optimization problem:

max
x∈Π(x0)

W (x) .

An optimal path from x0 is any capital path x that solves the above problem.

Let xM be the solution to f(x) = x. For any x ∈ Π(x0), we have xt ≤ max
{
x0, x

M
}

.

A direct application of Tychonov’s Theorem (see, among others, Stokey et al., 1989;

Le Van and Dana, 2003) implies that Π(x0) is compact in the product topology de-

fined on the space of sequences x, and that W (x) is well-defined and continuous over

Π(x0) with respect to the product topology. These observations ensure the existence

of an optimal path. The positivity of the optimal consumption and capital paths

follows from (D1) and the Inada condition. The following proposition summarizes

the above discussion.

Proposition 2.1. (i) There exists an optimal path x from any x0 > 0. The

associated optimal consumption path c is given by ct = f(xt)− xt+1, ∀t.

(ii) If x is an optimal path and c is the associated optimal consumption path, then

ct > 0 and xt > 0, ∀t.

Proposition 2.1 allows us to study the optimal path via the corresponding Euler

equations.

2.3 Value function and optimal policy correspondence

For x0 > 0, the value function V is defined by

V (x0) ≡ max
x∈Π(x0)

W (x) .

The value function is finite because of (U2), (D1) and the existence of a maximum

sustainable capital stock. Under these conditions, the value function V is continuous

and is the unique solution to the Bellman functional equation. Applying the argu-

ment from Proposition 3.4.1 of Le Van and Dana (2003), we arrive at the following

proposition.
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Proposition 2.2. (i) The value function V is continuous and strictly increasing,

satisfying the Bellman equation: for all x0 > 0,

V (x0) = max
0≤y≤f(x0)

{
[1− δ(x0, y)]u (f(x0)− y) + δ(x0, y)V (y)

}
.

(ii) The value function V is the unique solution to the Bellman equation which is

continuous, strictly increasing, and satisfies the transversality condition:

lim
T→∞

T−1∏
s=0

δ(xs, xs+1)V (xT ) = 0 , ∀x0 > 0, ∀x ∈ Π(x0) .

(iii) A sequence x ∈ Π(x0) is an optimal path if and only if for all t it satisfies

V (xt) =
[
1− δ(xt, xt+1)

]
u(f(xt)− xt+1) + δ(xt, xt+1)V (xt+1) .

Proposition 2.2 implies that every optimal path is time-consistent. However, an

optimal path from x0 is not necessarily unique. The optimal policy ϕ : R+ → R+,

defined as

ϕ(x0) = argmax
0≤y≤f(x0)

{
[1− δ(x0, y)]u(f(x0)− y) + δ(x0, y)V (y)

}
,

is, in general, a correspondence rather than a function: for a given x0, ϕ(x0) may

be a set rather than a singleton.

The non-emptiness and closedness of the optimal policy correspondence, as well as

its equivalence to the optimal path, follow directly from the continuity of the value

function via the Maximum Theorem. Furthermore, ϕ is monotone, which is key to

studying the monotonicity of optimal paths. The following proposition summarizes

the main properties of ϕ.

Proposition 2.3. (i) For any x0 > 0, if x1 ∈ ϕ(x0), then 0 < x1 < f(x0).

(ii) ϕ is closed and upper hemicontinuous.

(iii) A sequence x ∈ Π(x0) is the optimal path if and only if xt+1 ∈ ϕ(xt), ∀t.

(iv) If y ∈ ϕ(x) and y′ ∈ ϕ(x′) with x < x′, then y ≤ y′.

By (UD1), the function −δ1(x0, x1)u
(
f(x0)−x1

)
+
[
1−δ(x0, x1)

]
u′
(
f(x0)−x1

)
f ′(x0)

increases with x1. Taking this into account and applying the argument from the
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proof of Theorem 6 in Dechert and Nishimura (1983), we obtain that the left deriva-

tive of V is given by the minimal value in the set ϕ(x0), while the right derivative

is given by the maximal one. The following proposition characterizes the left and

right derivatives of the value function.

Proposition 2.4. The value function V has left and right derivatives at any x0 > 0.

(i) The left derivative of V is defined as:

V ′−(x0) = −δ1(x0, x1)u
(
f(x0)− x1

)
+
[
1− δ(x0, x1)

]
u′
(
f(x0)− x1

)
f ′(x0),

where x1 = min{x : x ∈ ϕ(x0)}.

(ii) The right derivative of V is defined as:

V ′+(x0) = −δ1(x0, x1)u
(
f(x0)− x1

)
+
[
1− δ(x0, x1)

]
u′
(
f(x0)− x1

)
f ′(x0),

where x1 = max{x : x ∈ ϕ(x0)}.

Proposition 2.4 provides the relationship between the differentiability of the value

function and the uniqueness of the optimal path. Given x0, ϕ(x0) is single-valued if

and only if V ′−(x0) = V ′+(x0), so that V is differentiable at x0.

3. Monotonicity of optimal paths

In this section, we characterize optimal paths in an economy with endogenous dis-

counting. We show that there are only three possibilities: (i) the optimal path is

constant over time; (ii) it is strictly increasing and converges to a positive steady

state; (iii) it is strictly decreasing and converges to either the origin or a positive

steady state. We provide specific conditions in terms of the primitives of the model

under which it is optimal for the economy to accumulate or reduce its capital stock.

We begin by deriving the Euler equations. By Proposition 2.1, 0 < xt+1 < f(xt) for

any t ≥ 0. Equating ∂W (x)/∂xt+1 to zero, we obtain the following proposition.

Proposition 3.1. Every optimal path x ∈ Π(x0) satisfies the Euler equations: for
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all t ≥ 0,[
1− δ(xt, xt+1)

]
u′(f(xt)− xt+1) + δ2(xt, xt+1)u(f(xt)− xt+1)

= δ(xt, xt+1)
[
1− δ(xt+1, xt+2)

]
u′(f(xt+1)− xt+2)f ′(xt+1)

− δ(xt, xt+1)δ1(xt+1, xt+2)u(f(xt+1)− xt+2)

+ δ2(xt, xt+1)V (xt+1) + δ(xt, xt+1)δ1(xt+1, xt+2)V (xt+2).

(3)

Although (3) involves the instantaneous utility function u and the value function

V , it remains unchanged if a constant is added to u. Thus, unlike other endogenous

discounting models, regardless of whether the discount factor depends on consump-

tion (as in, e.g., Das, 2003; Chakrabarty, 2012) or on the capital stock (as in, e.g.,

Erol et al., 2011), in our case the value of u(0) does not affect the optimal path.

It can be checked that the right-hand side of (3) is strictly increasing in xt+2. There-

fore, along each optimal path, starting from period 1, the subsequent optimal path

is unique. Moreover, by Proposition 2.4, the value function is differentiable at these

capital levels. Using the same arguments as in Dechert and Nishimura (1983), we

conclude that the value function is differentiable almost everywhere. Hence the

set of initial capital stocks from which the optimal path is not unique is at most

countable. The following proposition summarizes the above discussion.

Proposition 3.2. (i) For every optimal path x = {xt}∞t=0, the value function V

is differentiable at xt for t ≥ 1, and there exists a unique optimal path from xt.

(ii) V is differentiable at x0 > 0 if and only if there exists a unique optimal path

from x0.

Consider now the long-run outcomes of the economy. We call x∗ ≥ 0 a steady state if

the sequence {xt}∞t=0, where xt = x∗ for all t, is an optimal path. Note that the origin,

x∗ = 0, is always a (trivial) steady state. Proposition 3.1 allows us to characterize

non-trivial steady states. The following proposition provides a necessary condition

for the existence of positive steady states. Moreover, it maintains that when the

economy starts from a steady state, it never jumps out of it, and when the economy

does not start from a steady state, it never reaches one in a finite number of periods.

Proposition 3.3. Let x∗ > 0 be a positive steady state.

(i) We have δ(x∗, x∗)f ′(x∗) = 1, and ϕ(x∗) = {x∗}.
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(ii) For every optimal path x = {xt}∞t=0, if x0 6= x∗, then xt 6= x∗ for any t ≥ 0.

The following theorem, building on the monotonicity of the optimal policy corre-

spondence from Proposition 2.3, proves the convergence result: if an optimal path

does not start from a steady state, it converges monotonically to some steady state.

Theorem 3.1. Every optimal path is either constant or strictly monotonic and

converges to a steady state.

Suppose that the economy does not start from a steady state. Given an initial

capital stock x0, how do we determine whether it is optimal for the economy to ac-

cumulate capital during the transition or decrease the existing stock? The following

proposition provides simple sufficient conditions for identification of increasing and

decreasing optimal paths.

Proposition 3.4. (i) If lim infx→0 δ(x, x)f ′(x) > 1, then every optimal path from

x0 > 0 converges to a positive steady state. Moreover, for all sufficiently small

x0, the optimal paths are strictly increasing.

(ii) If there is x̂ > 0 such that δ(x, x)f ′(x) < 1 for all x > x̂, then every optimal

path from x0 > x̂ is strictly decreasing.

Intuitively, in the optimal growth model with endogenous discounting, at each level

of capital there are two competing effects: the return on savings and the discount

factor. A higher marginal productivity of capital, f ′(x), increases the incentive to

save, while a lower discount factor, δ(x, y), reduces it. The interaction between these

two effects determines the monotonicity of optimal paths.

Part (i) of Proposition 3.4 implies that if, for small values of the capital stock,

productivity exceeds the efficient rate of time preference, then saving is optimal and

the optimal paths are increasing. Part (ii) of Proposition 3.4 states that once the

economy has accumulated sufficient capital and productivity falls below the rate of

time preference, saving is no longer profitable and the optimal paths are decreasing.

In the general case, when Proposition 3.4 does not apply, the following theorem

presents two mutually exclusive integral conditions.

Theorem 3.2. Suppose that x0 > 0 is not a steady state. Let x∗ either be 0 or

satisfy δ(x∗, x∗)f ′(x∗) = 1.
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(i) Suppose that for all x∗ > x0 we have∫ x∗

x0

[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy < 0 . (4)

Then every optimal path from x0 is strictly decreasing.

(ii) Suppose that for all x∗ < x0 we have∫ x0

x∗

[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy > 0 . (5)

Then every optimal path from x0 is strictly increasing.

Theorem 3.2 deserves several comments. First, let us provide the intuition behind

conditions (4) and (5). Suppose a decision maker endowed with a capital stock y,

where 0 < y < f(y), faces the following choice: remain at y or increase the capital

stock by a small amount. The constant path (y, y, . . .) yields intertemporal utility

u
(
f(y)− y

)
. If the decision maker invests ε > 0, the resulting capital path becomes

(y, y + ε, y + ε, . . .). The difference in intertemporal utility is given by

∆W (ε) ≡ W (y, y + ε, y + ε, . . .)−W (y, y, y, . . .)

=
[
1− δ(y, y + ε)

]
u
(
f(y)− y − ε

)
+ δ(y, y + ε)u

(
f(y + ε)− y − ε

)
−
[
1− δ(y, y)

]
u
(
f(y)− y

)
− δ(y, y)u

(
f(y)− y

)
.

Taking the limit as ε tends to zero and simplifying, we get

lim
ε→0

∆W (ε)

ε
=
[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
.

Thus,
[
δ(y, y)f ′(y) − 1

]
u′
(
f(y) − y

)
is the marginal difference between increasing

capital in the future and maintaining the current capital stock. It can be interpreted

as a form of net gain measured in terms of utility. If an increase in capital creates a

negative net gain, the decision maker prefers to reduce investment, and the optimal

path is decreasing. Conversely, if a decrease in capital produces a negative net gain,

the decision maker prefers to increase investment, and the optimal path is increasing.

Second, Theorem 3.2 and Proposition 3.4 provide useful tools to analyze whether

the economy starting from some x0 optimally increases or decreases capital stock.

As an illustration, consider an example where the function δ(x, x)f ′(x) is single-

peaked and the equation δ(x, x)f ′(x) = 1 has two positive solutions, xs < xs.7 Then

δ(x, x)f ′(x) > 1 in the interval (xs, x
s), and δ(x, x)f ′(x) < 1 for x < xs and x > xs.

7 It is possible to have a continuum of solutions: for example, when δ(x, x) = 1/f ′(x) in some

interval, as in the example of Erol et al. (2011). However, this situation only occurs for a set of

fundamentals of measure zero.
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Suppose that x0 < xs. Then condition (4) trivially holds for x∗ = xs. If additionally

condition (4) holds for x∗ = xs, then every optimal path starting from x0 ∈ (0, xs) is

strictly decreasing and converges to the origin. Similarly, suppose that xs < x0 < xs.

Then condition (5) trivially holds for x∗ = xs. If additionally condition (5) holds for

x∗ = 0, then every optimal path starting from x0 ∈ (xs, x
s) is strictly increasing and

converges to xs. Also, for x0 > xs, part (ii) of Proposition 3.4 implies that every

optimal path starting from x0 ∈ (xs,+∞) is strictly decreasing and converges to xs.

Third, it follows from Theorem 3.2 that, under certain conditions, the endogenous

discounting model parallels well-known findings from the optimal growth model with

a constant discount factor.

Corollary 3.1. Let δ = supx≥0 δ(x, x) and δ = infx≥0 δ(x, x).

(i) If δf ′(0) < 1, then every optimal path converges to the origin.

(ii) If δf ′(0) > 1, then every optimal path converges to a positive steady state.

(iii) If δ(x, y) = δf (y), then either every optimal path converges to the origin, or

every optimal path converges to a unique positive steady state.

Part (i) of Corollary 3.1 implies that when productivity is always lower than the

rate of time preference, it is never optimal to save. Since δ(y, y)f ′(y) < 1 for all

y, condition (4) holds for all x0. Conversely, inequality in part (ii) of Corollary

3.1 ensures that it is always optimal to save. Then δ(y, y)f ′(y) > 1 for all y, and

condition (5) holds for all x0.

Part (iii) of Corollary 3.1 maintains that when discounting depends only on future

capital, the model with endogenous discounting reproduces the dynamic properties

of the standard Ramsey model. This result sharply contrasts with Erol et al. (2011),

who study discount factor as a function of future capital (in our terms) and provide a

numerical example in which two optimal steady states with local convergence exist.

The crucial difference lies in the assumption about the relationship between patience

and wealth. Erol et al. (2011) assume that the discount factor increases with future

capital, so that the decision maker becomes more patient when expecting higher

future wealth. By contrast, our condition (D2) implies that the higher the future

capital, the lower the discount factor, which aligns better with the usual intuition.
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4. Poverty traps

Finally, we apply our results to study poverty traps under endogenous discounting.

In this section, we define a critical level of capital and provide analytical condition

for the existence of a poverty trap in a given economy. We also construct several

examples to illustrate the existence of a critical level for specific discount functions.

4.1 Critical level: theory

A poverty trap, sometimes called a development trap, is a situation in which, for

some low initial capital stocks, the optimal capital path is decreasing and converges

to the origin, while for other initial capital stocks, it converges to a positive steady

state. The threshold that separates two different long-run outcomes in the economy

is known as the critical level. Formally, we call xC > 0 a critical level of capital

if, for all x0 < xC , any optimal path from x0 converges to the origin, while for all

x0 > xC , any optimal path from x0 remains bounded away from zero.

The monotonicity of the optimal policy correspondence ϕ guarantees that, if a criti-

cal level xC exists, it is unique. The following proposition characterizes the existence

of the critical level based on the monotonicity of optimal paths.

Proposition 4.1. There exists a critical level xC > 0 if and only if there exist an

optimal path converging to the origin and an optimal path converging to a positive

steady state.

Intuitively, Proposition 4.1 states that for the existence of a critical level we need

two capital stocks, x′0 > x0 > 0, such that the optimal path from x0 is decreasing

and converges to the origin, while the optimal path from x′0 is increasing.

It is tempting to apply Theorem 3.2 to determine whether an economy with endoge-

nous discounting has a critical level. At first glance, it might seem that condition

(4) guarantees an optimal path converging to the origin, while condition (5) ensures

an optimal path converging to a positive steady state. One might then conclude

that if both conditions hold, a critical level exists. However, the problem is more

subtle than this intuition suggests.

Consider again the example where the equation δ(x, x)f ′(x) = 1 has exactly two

solutions, xs < xs. Both values xs and xs are candidates for non-trivial steady
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states. As we have seen, an optimal path from x0 < xs is decreasing and converges

to the origin if condition (4) holds for x∗ = xs, that is,∫ xs

x0

[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy < 0 .

Since δ(y, y)f ′(y) < 1 for all y < xs, we have∫ xs

0

[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy < 0 .

However, since δ(y, y)f ′(y) > 1 for (xs, x
s), it follows that for all x0 > 0,∫ x0

0

[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy < 0 ,

which is exactly the opposite of condition (5) for x∗ = 0. Thus, it is impossible

to deduce whether there exists an increasing optimal path. In other words, the

conditions in both parts of Theorem 3.2 cannot hold simultaneously.

Because of this difficulty, a general condition for the existence of a critical level in

an economy with endogenous discounting is not straightforward. However, in what

follows we provide several examples in which critical levels exist. Moreover, our

examples are derived for a set of parameters with positive measure, suggesting that

critical levels are not rare in this class of economies.

4.2 Example: Discount function of consumption

Consider the case where discounting depends on consumption, δ(x, y) = δb(c), with

c = f(x)− y, and suppose that the discount factor is explicitly defined as:

δb(c) ≡ cθ

b+ cθ
,

where b > 0 is a constant whose value will be specified later.

Consider an economy with isoelastic utility u(c) = cρ and Cobb–Douglas technology

f(x) = Axα, with α, ρ ∈ (0, 1). We assume that the parameters α, ρ and θ are such

that (1 − α)/α < θ < min{ρ, 1 − ρ}. Observe that u(0) = 0. Although the Cobb–

Douglas production function has infinite marginal productivity at zero capital, which

creates a very strong incentive to accumulate capital when it is scarce, we show that

a critical level xC nevertheless exists.

It is easy to verify that δb(c) is increasing and concave, so that conditions (D1)–(D3)

are satisfied. Furthermore, Appendix E shows that the function
[
1 − δb(c)

]
u(c) is

increasing and concave in c, implying that conditions (UD1)–(UD2) hold.
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We have

δb
(
f(x)− x

)
f ′(x) =

αAxα−1
(
Axα − x

)θ
b+

(
Axα − x

)θ =
αAxα(1+θ)−1

(
A− x1−α)θ

b+
(
Axα − x

)θ .

Consider the function ζ(x) =
(
αAxα−1 − 1

)(
Axα − x

)θ
. Then the equation for

positive steady states, δb (f(x)− x) f ′(x) = 1, is equivalent to ζ(x) = b.

Let xG = (αA)1/(1−α) be the solution to f ′(x) = 1. Since α(1 + θ) > 1, we have

ζ(0) = ζ(xG) = 0. The following claim (see Appendix E) shows that ζ is single-

peaked in the interval
[
0, xG

]
. Thus, for an appropriate choice of the parameter b,

the equation δb
(
f(x)−x

)
f ′(x) = 1 has two solutions, meaning that there are exactly

two candidates for the positive steady state.

Claim 4.1. There exists x̂ ∈
(
0, xG

)
such that ζ is increasing in [0, x̂) and decreasing

in
(
x̂, xG

]
.

Denote the maximum of function ζ in [0, xG] by ζ∗ = ζ(x̂). If b > ζ∗, then

δb (f(x)− x) f ′(x) < 1 in the interval
(
0, xG

)
. By Proposition 3.4, every optimal

path is decreasing and, thus, converges to zero.

If 0 < b < ζ∗, the equation δb (f(x)− x) f ′(x) = 1 has exactly two solutions in(
0, xG

)
. Let xs(b) be the largest solution and xs(b) the smallest. Clearly, xs(b) <

x̂ < xs(b) and the two solutions converge to x̂ when b tends to ζ∗. The single-

peakedness property also implies that, as xs(b) increases with b, xs(b) decreases.

It is easy to verify that δb
(
f(y)−y

)
f ′(y) < 1 if y < xs(b), and δb

(
f(y)−y

)
f ′(y) > 1

if xs(b) < y < xs(b). Therefore, for any b ∈ (0, ζ∗),∫ xs(b)

0

[
δb(f(y)− y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy < 0 .

Let

φ(b) ≡
∫ xs(b)

0

[
δb(f(y)− y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy

=

∫ xs(b)

0

[
δb(f(y)− y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy

+

∫ xs(b)

xs(b)

[
δb(f(y)− y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy .

Since both δb(f(y)− y) and xs(b) decrease with b, while xs(b) increases with b, the

function φ decreases with b.
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When b goes to ζ∗, both xs(b) and xs(b) converge to x̂. Then, limb→ζ∗ φ(b) < 0.

Moreover, since limb→0 x
s(b) = xG,

lim
b→0

φ(b) =

∫ xG

0

[
f ′(y)− 1

]
u′
(
f(y)− y

)
dy > 0 .

Thus, there exists b∗ ∈ (0, ζ∗) such that φ(b∗) = 0. Fix r > 0 such that 0 <

b∗ − r < b∗ + r < xG. The monotonicity of function φ ensures that φ(b) is negative

in (b∗, b∗ + r) and positive in (b∗ − r, b∗).

If b∗ < b < b∗ + r, there exists x(b) > 0 such that∫ xs(b)

x(b)

[
δb(f(y)− y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy < 0 .

Clearly, we can choose x(b) to be smaller than xs(b). Since δb (f(y)− y) f ′(y) < 1

in the interval (0, xs(b)), we have∫ xs(b)

x(b)

[
δb(f(y)− y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy < 0 .

By part (i) of Theorem 3.2, every optimal path starting from x0 < x(b) converges to

the origin. Using the same argument, by part (ii) of Theorem 3.2, if b∗− r < b < b∗,

there exists x(b) > 0 such that every optimal path starting from x0 > x(b) converges

to a positive steady state.

It remains to show that there is some b ∈ (b∗ − r, b∗ + r) such that both values x(b)

and x(b) exist. The following claim (see Appendix E) establishes this result.

Claim 4.2. There exists an open interval I ⊂ (b∗ − r, b∗ + r) such that for every

b ∈ I, the economy with the discount function δb(c) has a critical level.

Note that in fact we have proved that critical levels exist for a set of parameters

with positive measure.

4.3 Example: Discount function of current capital

Consider now the case where discounting depends only on current capital: δ(x, y) =

δp(x), and suppose that the discount factor is given by

δp(x) ≡ xθ

p+ xθ
,

where p > 0 is a constant whose value will be specified later.
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We consider the same economy as in the example above: u(c) = cρ and f(x) = Axα,

with α, ρ ∈ (0, 1). However, we now assume that 1 − α < θ < αρ. As before, we

have f ′(0) =∞, and yet a poverty trap exists.

It is easy to verify that δp(x) is concave and
[
1−δp(x)

]
u
(
f(x)

)
is strictly increasing,

so that condition (UD2) holds. We have

δp
(
x
)
f ′(x) =

αAxα+θ−1

p+ xθ
.

Equation δp (x) f ′(x) = 1 is equivalent to χ(x) = p, where χ(x) ≡ xθ
[
αAxα−1 − 1

]
.

Since α+θ > 1, χ(0) = χ(xG) = 0, where xG is the solution to f ′(x) = 1. Moreover,

the function χ is single-peaked in [0, xG]. Indeed,

χ′(x) = xθ−1
[
A(α + θ − 1)xα−1 − θ

]
,

and hence, χ′(x) = 0 if and only if x = [A(α + θ − 1)/θ]1/(1−α) < (αA)1/(1−α) = xG.

Following the same arguments used in the previous example from Section 4.2, it is

straightforward to show the existence of an interval I such that for all p ∈ I, the

corresponding economy with the discount function δp(x) has a critical level.

5. Conclusion

In this paper, we propose a general approach to studying an optimal growth model

with endogenous discounting. We allow the discount factor to depend on both

consumption and the capital stock, and assume that the sum of discount factors in

the intertemporal utility equals one. While this property has no effect in models with

a constant discount factor, under endogenous time preference it ensures that optimal

paths and steady states are independent of the level and sign of instantaneous utility.

We characterize the value function and the optimal policy correspondence, with a

particular focus on the dynamics of optimal paths. We show that, unless start-

ing from a steady state, every optimal path is either strictly increasing or strictly

decreasing. We also examine the existence of poverty traps driven solely by endoge-

nous discounting. Our results suggest that when the discount factor depends only

on consumption or on current capital, a critical level of capital exists. In this case,

two otherwise identical economies may diverge: one starting below the critical level

optimally depletes its capital stock and remains stuck in a poverty trap, while the

other, starting above the critical level, accumulates capital and grows.
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Several open questions remain for future research. Of particular interest are gen-

eral conditions for the existence of a critical level under arbitrary discount functions,

which proved analytically challenging. Another promising direction is to study com-

petitive equilibria with capital externalities in discounting that decentralize the op-

timal path. We believe that our approach to endogenous discounting provides a

useful foundation for a wide range of applications.

Appendix

A. Pareto property and the value of u(0)

It is natural to require that the objective function W (x) satisfies the Pareto property :

for any feasible capital path {xt}∞t=0, if x′0 > x0, then

W (x′0, x1, x2, . . .) > W (x0, x1, x2, . . .) .

This condition is equivalent to the requirement that for c′0 > c0, consumption path

(c′0, c1, c2, . . .) dominates (c0, c1, c2, . . .) in terms of intertemporal utility. In classic

optimal growth models with a constant discount factor, this property is guaranteed

by the fact that u(c) is increasing. However, when the discount factor is endogenous,

the situation changes. The following claim ensures that a necessary condition for

the Pareto property is that u(c) is bounded from below.

Claim A.1. If limc→0 u(c) = −∞, then W (x) does not satisfy the Pareto property.

Proof. Since

W (x, x, . . .) =
[
1− δ(x, x)

]
u(f(x)− x) + δ(x, x)W (x, x, . . .) ,

we have W (x, x, . . .) = u(f(x) − x). Fix a triplet (x, x̂, x′), such that x̂ > x,

δ(x̂, x′) > δ(x, x′) and

u
(
f(x′)− x′

)
<

[
1− δ(x, x′)

]
u(f(x)− x′)−

[
1− δ(x̂, x′)

]
u(f(x̂)− x′)

δ(x̂, x′)− δ(x, x′)
.

Then W (x̂, x′, x′, . . .) < W (x, x′, x′, . . .), violating the Pareto property. QED

Thus, unbounded from below instantaneous utility functions are not appropriate for

studying endogenous discounting. Suppose now that u(c) is bounded. The following

claim shows that the value of u(0) has no particular role.
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Claim A.2. Optimal path does not depend on u(0).

Proof. Since the objective function W (x) satisfies (1) for all t, we have

W (xt, xt+1, . . .)− u(0) =
[
1− δ(xt, xt+1)

][
u
(
f(xt)− xt+1

)
− u(0)

]
+ δ(xt, xt+1)

[
W (xt+1, xt+2, . . .)− u(0)

]
.

(A.1)

Iterating over time, we obtain

W (x0, x1, . . .) = u(0) +
[
1− δ(x0, x1)

][
u(f(x0)− x1)− u(0)

]
+

∞∑
t=1

([
1− δ(xt, xt+1)

][
u(f(xt)− xt+1)− u(0)

] t−1∏
s=0

δ(xs, xs+1)

)
.

Thus, the optimization problem (2) is invariant under changes in u(0). Without loss

of generality, we can always consider u(c)−u(0) as the instantaneous utility. QED

By contrast, optimal paths in models that do not normalize the sum of discount

factors to 1 depend on u(0). Indeed, if intertemporal utility is just a sum of utilities

discounted by an endogenous discount factor, we have

W (x0, x1, x2, . . .) = u(c0) +
∞∑
t=1

u(ct)
t−1∏
s=0

δ(xs, xs+1)

=
[
u(c0)− u(0)

]
+
∞∑
t=1

[
u(ct)− u(0)

] t−1∏
s=0

δ(xs, xs+1) + u(0) + u(0)
∞∑
t=1

t−1∏
s=0

δ(xs, xs+1) .

Unlike the standard Ramsey model or our setting, where only u(c)− u(0) matters,

here the optimal path starting from any x0 > 0 alters once u(0) changes. To illustrate

this point, suppose that discounting depends on future capital, δ(x, y) = δf (y), and

consider the necessary condition for a steady state (cf. Eq. 9 in Erol et al., 2011):

u
(
f(x)− x

)
=

[
1− δf (x)

] [
1− δf (x)f ′(x)

]
δf ′(x)

u′
(
f(x)− x

)
.

The left-hand side depends only on u(c), while the right-hand side does not. Thus,

adding a constant to u(c) affects the solution to the above equation and changes the

steady state capital stock, which is not the case in our paper.

Finally, we show that the Pareto property imposes another condition relating u(c)

to δ(x, y). Recall that ψ(x, y) =
[
1 − δ(x, y)

][
u
(
f(x) − y

)
− u(0)

]
. The following

claim studies the properties of ψ(x, y) and proves that once u(0) is finite, the Pareto

property is equivalent to the strictly increasing monotonicity of the function ψ(x, 0).
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Claim A.3. (i) If either δ(x, y) = δp(x) or δ(x, y) = δf (y), then δ12(x, y) = 0

and ψ12(x, y) > 0 for all 0 < y < f(x).

(ii) If δ(x, y) = δb
(
f(x) − y

)
, then the supermodularity of ψ is equivalent to the

strict concavity of
[
1− δb(c)

][
u(c)− u(0)

]
with respect to c.

(iii) When u(c) is bounded, the Pareto property is equivalent to condition (UD2).

Proof. For any 0 < y < f(x), the cross derivative of ψ is given by:

ψ12(x, y) = −δ12(x, y)
[
u
(
f(x)− y

)
− u(0)

]
+ δ1(x, y)u′

(
f(x)− y

)
− δ2(x, y)u′

(
f(x)− y

)
f ′(x)−

[
1− δ(x, y)

]
u′′
(
f(x)− y

)
f ′(x) .

Part (i). When the discount factor depends on current or future capital, the cross

derivative δ12(x, y) = 0. Since δ2(x, y) and u′′
(
f(x)− y

)
are non-positive, we have

ψ12(x, y) = δ1(x, y)u′
(
f(x)− y

)
− δ2(x, y)u′

(
f(x)− y

)
f ′(x)

−
[
1− δ(x, y)

]
u′′
(
f(x)− y

)
f ′(x) > 0 .

Part (ii). Let û(c) = u(c)−u(0). Obviously, û(c) ≥ 0 for c ≥ 0. When discounting

depends on consumption, δ(x, y) = δb
(
f(x)− y

)
, setting c = f(x)− y, we have

ψ12(x, y) = −δ12(x, y)û
(
f(x)− y

)
+ δ1(x, y)û′

(
f(x)− y

)
− δ2(x, y)û′

(
f(x)− y

)
f ′(x)−

[
1− δ(x, y)

]
û′′
(
f(x)− y

)
f ′(x)

= δb′′
(
f(x)− y

)
f ′(x)û

(
f(x)− y

)
+ δb′

(
f(x)− y

)
f ′(x)û′

(
f(x)− y

)
+ δb′

(
f(x)− y

)
û′
(
f(x)− y

)
f ′(x)−

[
1− δb

(
f(x)− y

)]
û′′
(
f(x)− y

)
f ′(x)

=
[
δb′′(c)û(c) + 2δb′(c)û′(c)−

[
1− δb(c)

]
û′′(c)

]
f ′(x) .

Thus, ψ12(x, y) > 0 if and only if([
1− δb(c)

]
û(c)

)′′
= −δb′′(c)û(c)− 2δb′(c)û′(c) +

[
1− δb(c)

]
û′′(c) < 0 .

Part (iii). To prove necessity, observe that if the Pareto property is satisfied, then

W (x0, 0, 0, . . .) = u(0) +
[
1− δ(x0, 0)

][
u
(
f(x0)

)
− u(0)

]
strictly increases with x0.

To prove sufficiency, we show that under condition (UD2), for any feasible path

{xt}∞t=0, the function W (x0, x1, . . .) strictly increases with x0. By (A.1), we have

W (x0, x1, . . .)−u(0) =
[
1−δ(x0, x1)

][
u
(
f(x0)−x1

)
−u(0)

]
+δ(x0, x1)

[
W (x1, x2, . . .)−u(0)

]
.

24



Function δ(x0, x1) does not decrease with x0. Furthermore, since ψ12(x0, x1) > 0,

for any 0 < x1 < f(x0), we have ψ1(x0, x1) > ψ1(x0, 0) > 0. Therefore, ψ(x0, x1)

increases with x0, implying that the Pareto property holds. QED

B. Proof of Proposition 2.3

Part (i) comes directly from Proposition 2.1. The Maximum Theorem implies part

(ii). Part (iii) follows from Proposition 2.2.

To prove part (iv), as in the proof of Claim A.3, let û
(
f(x)−y

)
= u

(
f(x)−y

)
−u(0),

and V̂ (x) = V (x)− V (0). Observe that û
(
f(x)− y

)
≥ 0 and V̂ (x) ≥ 0.

It is clear that for 0 ≤ y ≤ f(x), since V (0) = u(0), we have[
1−δ(x, y)

]
û
(
f(x)−y

)
+δ(x, y)V̂ (y) =

[
1−δ(x, y)

]
u
(
f(x)−y

)
+δ(x, y)V (y)−u(0) .

We show that, for any x < x′ and y ∈ ϕ(x), y′ ∈ ϕ(x′), we have y ≤ y′. Assume the

contrary, that is y > y′. We have[
1− δ(x, y)

]
û
(
f(x)− y

)
+ δ(x, y)V̂ (y) ≥

[
1− δ(x, y′)

]
û
(
f(x)− y′

)
+ δ(x, y′)V̂ (y′),[

1− δ(x′, y′)
]
û
(
f(x′)− y′

)
+ δ(x′, y′)V̂ (y′) ≥

[
1− δ(x′, y)

]
û
(
f(x′)− y

)
+ δ(x′, y)V̂ (y).

Summing these two inequalities, we get

ψ(x, y)+ψ(x′, y′)+δ(x, y)V̂ (y)+δ(x′, y′)V̂ (y′) ≥ ψ(x′, y)+ψ(x, y′)+δ(x, y′)V̂ (y′)+δ(x′, y)V̂ (y)

and, by the supermodularity property of ψ,

ψ(x, y) + ψ(x′, y′) < ψ(x′, y) + ψ(x, y′) .

Thus, with x < x′ and y > y′,

δ(x, y)V̂ (y) + δ(x′, y′)V̂ (y′) > δ(x, y′)V̂ (y′) + δ(x′, y)V̂ (y) ,

which implies that

V̂ (y′)
[
δ(x′, y′)− δ(x, y′)

]
> V̂ (y)

[
δ(x′, y)− δ(x, y)

]
or, equivalently,

V̂ (y′)

∫ x′

x

δ1(z, y′)dz > V̂ (y)

∫ x′

x

δ1(z, y)dz .

However, since the cross derivative of δ is non-negative, we have δ1(z, y) ≥ δ1(z, y′)

for any z ∈ (x, x′), leading to a contradiction.
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C. Proof of the results from Section 3

C.1 Proof of Proposition 3.2

To prove part (i), note that the Euler equation (3) can be written as[
1− δ(xt, xt+1)

]
u′(f(xt)− xt+1) + δ2(xt, xt+1)

[
u(f(xt)− xt+1)− u(0)

]
= δ(xt, xt+1)ψ1(xt+1, xt+2) + δ2(xt, xt+1)

[
V (xt+1)− V (0)

]
+ δ(xt, xt+1)δ1(xt+1, xt+2)

[
V (xt+2)− V (0)

]
.

It is straightforward to verify that each derivative with respect to xt+2 in the right-

hand side is positive. Therefore, ϕ(xt+1) is a singleton. This guarantees that the

sequence (x1, x2, . . .) is the unique optimal path starting from x1.

Part (ii) is a direct consequence of part (i) and Proposition 2.4.

C.2 Proof of Proposition 3.3

Part (i). Replace xt and xt+1 by x∗ in the Euler equations and observe that if x∗

is a steady state, then V (x∗) = u
(
f(x∗)− x∗

)
. According to Proposition 3.2, since

(x∗, x∗, . . .) is an optimal path, ϕ(x∗) = {x∗}.

Part (ii). Assume the contrary. Then, there exists some t ≥ 0 such that xt 6= x∗,

and xt+1 = x∗. The sequence (xt, x
∗, x∗, . . .) is an optimal path starting from xt.

We replace xt+1 by x∗ in the Euler equation:[
1− δ(xt, x∗)

]
u′
(
f(xt)− x∗

)
+ δ2(xt, x

∗)u
(
f(xt)− x∗

)
= δ(xt, x

∗)
[
1− δ(x∗, x∗)

]
u′
(
f(x∗)− x∗

)
f ′(x∗)

− δ(xt, x∗)δ1(x∗, x∗)u
(
f(x∗)− x∗

)
+ δ2(xt, x

∗)V (x∗) + δ(xt, x
∗)δ1(x∗, x∗)V (x∗).

Since V (x∗) = u
(
f(x∗)− x∗

)
, the Euler equation is equivalent to[

1− δ(xt, x∗)
]
u′
(
f(xt)− x∗

)
+ δ2(xt, x

∗)u
(
f(xt)− x∗

)
= δ(xt, x

∗)
[
1− δ(x∗, x∗)

]
u′
(
f(x∗)− x∗

)
f ′(x∗) + δ2(xt, x

∗)V (x∗).

In the case xt < x∗,

V (x∗) = u
(
f(x∗)− x∗

)
> u

(
f(xt)− x∗

)
.

26



Since δ(x∗, x∗)f ′(x∗) = 1 and δ2(xt, x
∗) ≤ 0, we have

[
1− δ(xt, x∗)

]
u′
(
f(xt)− x∗

)
= δ(xt, x

∗)
[
1− δ(x∗, x∗)

]
u′
(
f(x∗)− x∗

)
f ′(x∗) + δ2(xt, x

∗)
[
V (x∗)− u

(
f(xt)− x∗

)]
≤ δ(xt, x

∗)
[
1− δ(x∗, x∗)

]
u′
(
f(x∗)− x∗

)
f ′(x∗)

≤ δ(x∗, x∗)
[
1− δ(x∗, x∗)

]
u′
(
f(x∗)− x∗

)
f ′(x∗)

=
[
1− δ(x∗, x∗)

]
u′
(
f(x∗)− x∗

)
<
[
1− δ(xt, x∗)

]
u′
(
f(xt)− x∗

)
,

a contradiction. In the case xt > x∗, applying the same arguments but with reversed

inequalities also leads to a contradiction.

C.3 Proof of Theorem 3.1

Consider an optimal path {xt}∞t=0. If x0 is a steady state, then by Propositions

3.2–3.3, {xt}∞t=0 is constant.

Suppose now that x0 is not a steady state. By Proposition 3.3, there is no t such

that xt is a steady state. Moreover, if there is some t such that xt+1 = xt, then xt

is a steady state, since xt+1 ∈ ϕ(xt): a contradiction.

Thus, xt+1 6= xt for every t. If x0 < x1, since x1 ∈ ϕ(x0) and x2 ∈ ϕ(x1), Proposition

2.3 implies that x1 < x2. By induction, we get xt < xt+1 for any t. If x0 > x1,

using the same arguments, we find that the path {xt}∞t=0 is strictly decreasing. The

monotonicity of {xt}∞t=0 entails that this sequence has a limit, and the hemicontinuity

of the optimal policy correspondence guarantees that this limit is a steady state.

C.4 Proof of Proposition 3.4

Part (i). Assume the contrary. Then there exists an optimal path {xt}∞t=0 from

some non-steady state x0 > 0 that converges to the origin.

Since lim infx→0 δ(x, x)f ′(x) > 1, there exists z > 0 such that δ(x, x)f ′(x) > 1 for

any x < z. The convergence of {xt}∞t=0 to the origin implies the existence of a period

T such that xt < z for every t ≥ T .

Recall that

V (xT ) = [1− δ(xT , xT+1)]u
(
f(xT )−xT+1

)
+δ(xT , xT+1)

[
1−δ(xT+1, xT+2)

]
u
(
f(xT+1)−xT+2

)
+. . . .
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Since (xT , xT , . . .) is feasible,

V (xT ) ≥ u
(
f(xT )− xT

)
.

Let us now prove the following inequality for any t ≥ T :

u
(
f(xt)− xt

)
≥ [1− δ(xt, xt+1)]u

(
f(xt)− xt+1

)
+ δ(xt, xt+1)u

(
f(xt+1)− xt+1

)
.

Indeed, consider the following function:

η(y) = [1− δ(xt, y)]u
(
f(xt)− y

)
+ δ(xt, y)u

(
f(y)− y

)
. (C.1)

Taking the derivative with respect to y, and recalling that δ non-increases with the

second argument, we obtain for any y ∈ (xt+1, xt):

η′(y) = − [1− δ(xt, y)]u′
(
f(xt)− y

)
− δ2(xt, y)u

(
f(xt)− y

)
+ δ2(xt, y)u

(
f(y)− y

)
+ δ(xt, y)u′

(
f(y)− y

)
[f ′(y)− 1]

= −δ2(xt, y)
[
u
(
f(xt)− y

)
− u
(
f(y)− y

)]
− [1− δ(xt, y)]u′

(
f(y)− y

)
+ δ(y, y)u′

(
f(y)− y

)
[f ′(y)− 1]

≥ − [1− δ(y, y)]u′
(
f(y)− y

)
+ δ(y, y)u′

(
f(y)− y

)
[f ′(y)− 1]

=
[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
> 0 .

The function η is strictly increasing in the interval (xt+1, xt), which implies that

η(xt) > η(xt+1). Thus, the inequality holds and

u
(
f(xT )− xT

)
> [1− δ(xT , xT+1)]u

(
f(xT )− xT+1

)
+ δ(xT , xT+1)u

(
f(xT+1)− xT+1

)
> [1− δ(xT , xT+1)]u

(
f(xT )− xT+1

)
+ δ(xT , xT+1) [1− δ(xT+1, xT+2)]u

(
f(xT+2)− xT+2

)
> . . . > V (xT ) ,

a contradiction.

Since no optimal path converges to the origin, for all x0 sufficiently close to 0, any

optimal path from x0 is increasing and converges to a positive steady state.

Part (ii). Clearly, we need to consider only the case x0 ≤ xM . In this case, the

sequence (x0, x0, . . .) is feasible and V (x0) ≥ u
(
f(x0) − x0

)
. We apply the same

arguments as in the proof of part (i), but with reversed inequalities. If the optimal
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capital path {xt}∞t=0 is increasing, the function η given by (C.1) is strictly decreasing

in the interval (xt, xt+1). Indeed, for any y ∈ (xt, xt+1),

η′(y) = − [1− δ(xt, y)]u′
(
f(xt)− y

)
− δ2(xt, y)u

(
f(xt)− y

)
+ δ2(xt, y)u

(
f(y)− y

)
+ δ(xt, y)u′

(
f(y)− y

)
[f ′(y)− 1]

= −δ2(xt, y)
[
u
(
f(xt)− y

)
− u
(
f(y)− y

)]
− [1− δ(xt, y)]u′

(
f(y)− y

)
+ δ(y, y)u′

(
f(y)− y

)
[f ′(y)− 1]

≤ − [1− δ(y, y)]u′
(
f(y)− y

)
+ δ(y, y)u′

(
f(y)− y

)
[f ′(y)− 1]

=
[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
< 0 .

The function η is strictly decreasing in the interval (xt, xt+1), which implies η(xt) >

η(xt+1). Hence,

u
(
f(x0)− x0

)
> [1− δ(x0, x1)]u

(
f(x0)− x1

)
+ δ(x0, x1)u

(
f(x1)− x1

)
> [1− δ(x0, x1)]u

(
f(x0)− x1

)
+ δ(x0, x1) [1− δ(x1, x2)]u

(
f(x2)− x2

)
> . . . > V (x0) ,

a contradiction.

C.5 Proof of Theorem 3.2

Part (i). Let {xt}∞t=0 be the optimal path starting from x0 and assume that it is

increasing and it converges to a positive steady state, say x∗.

We prove that for any t,

V (xt+1)−V (xt) ≥
[
1−δ(xt, xt+1)

]
u
(
f(xt+1)−xt+1

)
−
[
1−δ(xt, xt+1)

]
u
(
f(xt)−xt+1

)
.

Indeed, the inequality is equivalent to

[1− δ(xt, xt+1)]V (xt+1) +
[
1− δ(xt, xt+1)

]
u
(
f(xt)− xt+1

)
+δ(xt, xt+1)V (xt+1)

≥ V (xt) +
[
1− δ(xt, xt+1)

]
u
(
f(xt+1)− xt+1

)
.

Since
[
1− δ(xt, xt+1)

]
u
(
f(xt)− xt+1

)
+δ(xt, xt+1)V (xt+1) = V (xt), we need to show

[
1− δ(xt, xt+1)

]
V (xt+1) ≥

[
1− δ(xt, xt+1)

]
u
(
f(xt+1)− xt+1

)
.
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This trivially holds because V (xt+1) ≥ u
(
f(xt+1)− xt+1

)
. Therefore, we obtain

V (xt+1)− V (xt) ≥
[
1− δ(xt, xt+1)

]
u
(
f(xt+1)− xt+1

)
−
[
1− δ(xt, xt+1)

]
u
(
f(xt)− xt+1

)
≥
[
1− δ(xt, xt+1)

] ∫ xt+1

xt

u′
(
f(y)− xt+1

)
f ′(y)dy

≥
[
1− δ(xt, xt+1)

] ∫ xt+1

xt

u′
(
f(y)− y

)
f ′(y)dy

≥
∫ xt+1

xt

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy.

We have also

V (x∗)− V (x0) =
∞∑
t=0

[
V (xt+1)− V (xt)

]
≥

∞∑
t=0

∫ xt+1

xt

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy

=

∫ x∗

x0

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy.

Since x∗ is a steady state, V (x∗) = u
(
f(x∗)− x∗

)
and∫ x∗

x0

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy

≤ V (x∗)− V (x0) ≤ u
(
f(x∗)− x∗

)
− u
(
f(x0)− x0

)
< u

(
f(x∗)− x∗

)
− u
(
f(x0)− x0

)
+

∫ x∗

x0

[
1− δ(y, y)f ′(y)

]
u′
(
f(y)− y

)
dy

=

∫ x∗

x0

u′
(
f(y)− y

)[
f ′(y)− 1

]
dy +

∫ x∗

x0

[
1− δ(y, y)f ′(y)

]
u′
(
f(y)− y

)
dy

=

∫ x∗

x0

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy,

a contradiction.

Part (ii). Let {xt}∞t=0 be the optimal path from x0 which is decreasing and con-

verges to some steady state x∗. We know that either x∗ = 0 or x∗ is solution to

δ(x, x)f ′(x) = 1.

We prove that for any t,

V (xt)−V (xt+1) ≤ −
[
1−δ(xt, xt+1)

]
u
(
f(xt+1)−xt+1

)
+
[
1−δ(xt, xt+1)

]
u
(
f(xt)−xt+1

)
.

Indeed, this inequality is equivalent to

[1− δ(xt, xt+1)V (xt+1] +
[
1− δ(xt, xt+1)

]
u
(
f(xt)− xt+1

)
+δ(xt, xt+1)V (xt+1)

≥ V (xt) +
[
1− δ(xt, xt+1)

]
u
(
f(xt+1)− xt+1

)
.
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Since
[
1 − δ(xt, xt+1)

]
u
(
f(xt) − xt+1

)
+δ(xt, xt+1)V (xt+1) = V (xt), it remains to

prove that

[1− δ(xt, xt+1)]V (xt+1) ≥
[
1− δ(xt, xt+1)

]
u
(
f(xt+1)− xt+1

)
.

This holds because V (xt+1) ≥ u
(
f(xt+1)− xt+1

)
. Thus, we obtain

V (xt)− V (xt+1) ≤
[
1− δ(xt, xt+1)

]
u
(
f(xt)− xt+1

)
−
[
1− δ(xt, xt+1)

]
u
(
f(xt+1)− xt+1

)
≤
[
1− δ(xt, xt+1)

] ∫ xt

xt+1

u′
(
f(y)− xt+1

)
f ′(y)dy

≤
[
1− δ(xt, xt+1)

] ∫ xt

xt+1

u′
(
f(y)− y

)
f ′(y)dy

≤
∫ xt

xt+1

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy.

We also have

V (x0)− V (x∗) =
∞∑
t=0

[
V (xt)− V (xt+1)

]
≤

∞∑
t=0

∫ xt

xt+1

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy

=

∫ x0

x∗

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy.

Therefore,∫ x0

x∗

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy

≥ V (x0)− V (x∗) ≥ u
(
f(x0)− x0

)
− u
(
f(x∗)− x∗

)
> u

(
f(x0)− x0

)
− u
(
f(x∗)− x∗

)
−
∫ x0

x∗

[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy

=

∫ x0

x∗
u′
(
f(y)− y

)[
f ′(y)− 1

]
dy −

∫ x0

x∗

[
δ(y, y)f ′(y)− 1

]
u′
(
f(y)− y

)
dy

=

∫ x0

x∗

[
1− δ(y, y)

]
u′
(
f(y)− y

)
f ′(y)dy,

a contradiction.

C.6 Proof of Corollary 3.1

Parts (i) and (ii) follow directly from Theorem 3.2. To prove part (iii), observe that,

since δf decreases with x, the function δf (x)f ′(x) strictly decreases. If δf (0)f ′(0) ≤
1, then, by part (i), every optimal path is decreasing and converges to the origin.
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If δf (0)f ′(0) > 1, denote by xs the unique solution to the equation δf (x)f ′(x) = 1.

We have δf (x)f ′(x) > 1 for x < xs and δf (x)f ′(x) < 1 for x > xs. By part (i) of

this Corollary and part (ii) of Proposition 3.4, every optimal path {xt}∞t=0 increases

if x0 < xs and decreases if x0 > xs. In both cases, the path converges to xs.

D. Proof of Proposition 4.1

In view of monotonicity of optimal paths, necessity is obvious. To prove sufficiency,

assume the existence of an optimal path {xt}∞t=0 that converges to zero, and an

optimal path {xt}∞t=0 that converges to a positive steady state. Let xC be the

infimum of the set of capital stocks x0 that satisfy the condition that there exists

an optimal path starting from x0, bounded away from zero.

The existence of a path converging to zero implies xC > 0. Indeed, if xC = 0, by the

definition of xC , any optimal path starting from x0 > 0 should be bounded away

from zero, which is a contradiction.

Since we have chosen xC in this way, if x0 < xC , every optimal path starting from

x0 will converge to the origin. On the other hand, if x0 > xC , Proposition 2.3

guarantees that any optimal path starting from x0 will be bounded away from zero.

E. Proofs for the Example from Section 4.2

Consider the function
[
1− δb(c)

]
u(c). Calculus gives:

d

dc

[
1− δb(c)

]
u(c) =

d

dc

(
bcρ

b+ cθ

)
=

b2ρcρ−1 + bcθ+ρ−1(ρ− θ)
(b+ cθ)2 > 0 .

Since ρ < 1 and ρ + θ < 1, the numerator decreases in c. Hence, the function[
1− δb(c)

]
u(c) is increasing and concave in c.

Proof of Claim 4.1. Recall that ζ(0) = ζ(xG) = 0. Let x̂ ∈ argmax0≤x≤xG ζ(x).

For 0 ≤ x ≤ xG, we have f ′(x) > 1 and f(x) > x, so 0 < x̂ < xG. We prove that x̂

is the unique solution to ζ ′(x) = 0 in
(
0, xG

)
.

Indeed, ζ(x) = g(x)θg′(x) with g(x) = f(x)− x. Then

ζ ′(x) = θg(x)θ−1
[
g′(x)

]2
+ g(x)θg′′(x) = g(x)θ−1

(
θ
[
g′(x)

]2
+ g(x)g′′(x)

)
.
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The equation ζ ′(x) = 0 is equivalent to

ξ(x) ≡ θ
(
f ′(x)− 1

)2
+
(
f(x)− x

)
f ′′(x) = 0.

Let us prove that ξ(x) = 0 has a unique solution. Focus first on its derivative:

ξ′(x) = 2θ
(
f ′(x)− 1

)
f ′′(x) +

(
f ′(x)− 1

)
f ′′(x) +

(
f(x)− x

)
f ′′′(x)

= (2θ + 1)
(
αAxα−1 − 1

)
α(α− 1)Axα−2 +

(
Axα − x

)
α(α− 1)(α− 2)Axα−3

= α(α− 1)Axα−3
[
(2θ + 1)

(
αAxα − x

)
+ (α− 2)

(
Axα − x

)]
= −2α(1− α)Axα−2

[
(αθ + α− 1)Axα−1 −

(
θ +

α− 1

2

)]
.

Clearly, the equation

(αθ + α− 1)Axα−1 −
(
θ +

α− 1

2

)
= 0

has a unique positive solution:

x̃ =

(
αθ + α− 1

θ + α−1
2

A

) 1
1−α

< (αA)
1

1−α = xG .

Note that ξ′(x) < 0 if x ∈ (0, x̃) and ξ′(x) > 0 if x ∈
(
x̃, xG

)
. Moreover,

ξ(x̃) < ξ(xG) < 0 .

Because of this inequality, ξ(x) = 0 has no solution in the interval (x̃, xG).

Combining limx→0 ξ(x) = +∞ with the monotonicity of ξ in the interval (0, x̃), the

equation ξ(x) = 0 has a unique solution in (0, x̃). Thus the equation ζ ′(x) = 0

has unique solution in the interval
(
0, xG

)
, say x̂. The uniqueness of this solution

ensures that the function ζ is increasing in (0, x̂) and decreasing in
(
x̂, xG

)
. QED

Proof of Claim 4.2. To avoid confusion, denote by E(b) the economy cor-

responding to the discount function δb. The corresponding intertemporal utility

function is denoted by W b(x).

Fix any x0 ∈ (0, xG) such that x0 < xs(b) for any b ∈ (b∗ − r, b∗ + r), and N large

enough such that Nr > 1. For each n ≥ N , consider two sequences of intervals

In ≡
(
b∗ + 1

n+1
, b∗ + 1

n

)
and In ≡

(
b∗ − 1

n
, b∗ − 1

n+1

)
. By the choice of N , both In

and In are subsets of (b∗ − r, b∗ + r).

We prove the existence of n such that, either for any b ∈ In or for any b ∈ In, the

economy E(b) has a critical level.
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Assume the contrary. Proposition 4.1 implies that, for each n, there exists bn ∈ In
and bn ∈ In such that, starting from x0, any optimal path {xt(bn)}∞t=0 of the economy

E(bn) converges to the origin, and any optimal path {xt(bn)}∞t=0 of the economy E(bn)

converges to a positive steady state. Since x0 is smaller than any possible steady

state of E(bn) and E(bn), in the first case, the optimal path strictly decreases, while

in the second one, strictly increases. Clearly, both bn and bn converge to b∗ when n

goes to infinity.

The compactness of the set Π(x0) with respect to the product topology entails

the existence of a subsequence {bnk}
∞
k=0 such that the sequence of optimal paths{

{xt(bnk)}
∞
t=0

}∞
k=0

converges to a sequence {xt}∞t=0 under this topology. By the same

argument, there exists a subsequence {bnl}∞l=0 such that
{
{xt(bnl)}∞t=0

}∞
l=0

converges

to a sequence {xt}∞t=0 under the product topology. Clearly, {xt}∞t=0 is non-increasing

and {xt}∞t=0 is non-decreasing.

Take now any feasible path x ∈ Π(x0) and notice that

W bnk (x0, x1(bnk), x2(bnk), . . .) ≥ W bnk (x0, x1, x2, . . .) ,

W bnl (x0, x1(bnl), x2(bnl), . . .) ≥ W bnl (x0, x1, x2, . . .) .

Let k and l go to infinity, to obtain

W b∗(x0, x1, x2, . . .) ≥ W b∗(x0, x1, x2, . . .) ,

W b∗(x0, x1, x2, . . .) ≥ W b∗(x0, x1, x2, . . .) .

Since {xt}∞t=0 is arbitrary, both sequences {xt}∞t=0 and {xt}∞t=0 are optimal paths

of the economy E(b∗) starting from x0. According to Theorem 3.1, since we have

chosen x0 < xs(b
∗), these sequences are strictly monotonic. The first sequence is

strictly decreasing. It converges to the origin, since x0 is smaller than any candidate

for a positive steady state of the economy E(b∗). The second sequence is strictly

increasing. Therefore, x0 is the critical level of the economy E(b∗). Recalling that

we have chosen x0 arbitrarily less than xs(b
∗ − r), we reach a contradiction: each

x0 < xs(b
∗ − r) is a critical level of E(b∗).

This contradiction comes from the hypothesis that, for any n, there exists bn ∈ In
and bn ∈ In such that the corresponding economies have no critical level. Hence,

there exists some n such that, either for b ∈ In or for b ∈ In, the economy with the

discount function δb has critical level. QED
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