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Abstract

We propose and axiomatize a new model of incomplete preferences under uncer-

tainty, which we call hope-and-prepare preferences. Act f is considered more desirable

than act g when, and only when, both an optimistic evaluation, computed as the wel-

fare level attained in a best-case scenario, and a pessimistic one, computed as the

welfare level attained in a worst-case scenario, rank f above g. Our comparison cri-

terion involves multiple priors, as best and worst cases are determined among sets of

probability distributions, and is, generically, less conservative than Bewley preferences

and twofold multi-prior preferences, the two ambiguity models that are closest to ours.1
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1 Introduction

“Hoping for the best, prepared for the worst, and unsurprised by anything in

between.”

- Maya Angelou, I Know Why the Caged Bird Sings.

The complexity of economic decisions is likely to result in agents’ inability or unwilling-

ness to decide over the uncertain options they are supposed to compare. In this regard, the

restrictiveness of the assumption that individual preferences be complete was early acknowl-

edged,2 and was recently highlighted by empirical studies.3 We propose and characterize a

new incomplete decision criterion according to which, in the face of Knightian uncertainty

(Knight (1921)), agents both hope for the best and prepare for the worst.

We study preferences over acts f : S → X, which are mappings from states of the

world to outcomes, and we introduce and axiomatize preferences ≻ admitting the following

representation:

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

, (1)

where u is a numerical representation of preferences over outcomes, and C and D are sets of

probability distributions over the states, interpreted as sets of different scenarios.4 Thus, a

decision maker (DM) following such a criterion ranks an act f above an act g if and only if

f provides a higher expected utility than g in the worst-case scenario in C as well as in the

best-case scenario in D.

Our criterion is based on the conjunction of an optimistic (or ambiguity-seeking) assess-

ment and of a pessimistic (or ambiguity-averse) assessment.5 We then interpret a DM with

such a preference as hoping for the best scenario to realize, while also preparing for the worst

one to happen, when evaluating each option: we thus refer to a preference relation admit-

ting such a representation as a hope-and-prepare preference. As a brief illustration, think

2For instance, Aumann (1962) wrote: “Of all the axioms of utility theory, the completeness axiom is
perhaps the most questionable. Like others of the axioms, it is inaccurate as a description of real life; but
unlike them, we find it hard to accept even from a normative viewpoint.” Schmeidler (1989), commenting on
his characterization of the maxmin criterion, depicted the completeness axiom as “the most restrictive and
demanding assumption.”

3See Cettolin and Riedl (2019), Nielsen and Rigotti (2022).
4The function u : X → R is non-constant, affine and unique up to positive affine transformation. The

sets C and D are unique, non-disjoint, compact and convex.
5C and D being non-disjoint, the expected utility in the best-case scenario is higher.
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of a company considering launching a new product. Typically, such a dual policy of deci-

sion making would favor investment or production strategies that present promising profit

opportunities, in case the product captures an important market share, and a substantial

safeguard, in case the product does not.

We shall give special attention in our analysis to the concordant case in which C = D

—for which we also provide an axiomatization. Acts are then evaluated according to the

interval of all expected utility levels that they induce across all possible scenarios. More

precisely, an act f is preferred to an act g if and only if any expected utility level that is

attainable from g but not from f is below any expected utility level that is attainable from

f , and there exists at least one level that is indeed attainable from g but not from f . This

intuitive criterion for comparing ranges of expected utility levels works as a strict version of

the strong set order, which is, arguably, the most common way to compare intervals.

Importantly, hope-and-prepare preferences treat the optimistic and the pessimistic as-

sessments symmetrically: therefore, they do not systematically display a particular attitude

toward ambiguity, which is consistent with extensive empirical evidence (see Trautmann and

van de Kuilen (2015) for a survey).

The conjunction of a best-case evaluation and of a worst-case evaluation at play in our

criterion is akin to the one at play in the notion of obvious manipulation (Troyan and Morrill

(2020)), defined for revelation games in which the uncertainty faced by an agent concerns

others’ messages. Accordingly, the significant practical relevance of the notion of obvious

manipulation provides support for our criterion within uncertain strategic environments.

This notion gives an explanation, for instance, of untruthful reporting strategies that have

been consistently observed in the Immediate Acceptance mechanism, used to match students

with schools.6

The scope for applications of our criterion goes beyond strategic interactions. The idea

that both worst-case and best-case scenarios serve as reference points is recognized for various

social and economic domains where ambiguity is present. In this regard, let us simply

mention the evaluation of financial assets (Bossaerts et al. (2010), Schröder (2011), Ahn

et al. (2014)), or the evaluation of different medical treatments by physicians and patients

(Back et al. (2003), Taylor et al. (2017)); we discuss a third example in more detail.

It is not unusual for practitioners, reporters or fans to evaluate “young prospects” partic-

ipating in the annual Draft in North-American sports leagues —we take the example of the

6See Pathak and Sönmez (2008) and Dur et al. (2018).
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National Basketball Association league (NBA)— according to “ceiling and floor scenarios.”7

This can be formulated in our framework. There is potentially a myriad of parameters that

the agent considers relevant for the evaluation of prospects: a state is a particular config-

uration of parameters.8 In this complex environment, the agent faces ambiguity and must

compare prospects on the basis of a set C of probability distributions over configurations of

parameters. Loosely speaking, each player is identified with an act f , indicating their overall

performance in each state, which is then evaluated according to a utility function u, and,

for every scenario p ∈ C, the agent can compute the expectation of u(f) according to p.

Then, the incompleteness of a criterion such as ours reflects the necessity to have sufficient

conviction when declaring that a player is more promising than an other one. On the other

hand, a criterion should not be too incomplete; let us illustrate this point by comparing our

criterion to two alternative ones. Given u and C, the agent could require, for a “player

f” to be declared more promising than a “player g”, that, for each scenario in C, the ex-

pected utility associated with g be lower than the expected utility level associated with f

(Bewley (2002)). One could even require that any expected utility level attainable from g

be lower than any expected utility level attainable from f (Echenique et al. (2022)) —that

the “ceiling” of g be lower than the “floor” of f . Both of these conditions are stronger than

condition (1), expressing a more demanding notion of sufficient conviction. However, it may

very well be the case that only “generational talents” such as Victor Wembanyama,9 (who

was present in the 2023 Draft) be distinguished from other players on the basis of these more

conservative criteria, and that for rather homogeneous cohorts such as the 2024 cohort, the

agent fail to rank any player above an other one.10 In practical terms, according to our

criterion, a “player f” is declared more promising than a “player g” if and only if anything

that g could achieve and that f could not is considered worse than anything f could achieve.

With hope-and-prepare preferences, which, in this case, compare players on the basis of the

associated ranges of expected utility, in a way that is reminiscent of the strong set order, the

trade-off between decisiveness and conviction is addressed in a way that is more favorable to

7See, for example, James Hansen, “What makes an NBA Draft prospect high ceiling or high floor?”, SLC
Dunk, June 2023, and Kyle Boone, “NBA Draft 2024 ceiling and floor scenarios: The best or worst case
projections for five top prospects”, CBS Sports, June 2024. We note that the use of the expressions “ceiling”
and “floor” suggests that any case lying “in between” is considered possible.

8A state may thus encompass the roasters of coaches and players, at the beginning of the season and after
the winter “trade” period, of each franchise, their financial capacities, the performance of players already
in the league, the progression of each of these prospects, the approach to officiating favored by the league’s
executives, etc.

9See, for example, Sam Harris, “Why ‘alien’ Wembanyama is France’s next big thing - literally”, BBC
Sports, July 2024.

10See, for example, Adam Finkelstein, “No stars have revealed themselves in the 2024 NBA Draft, but
history tells us they’re hiding in plain sight”, CBS Sports, June 23 2024.
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decisiveness.

The two original axioms involved in our characterization are interpreted along this line:

we propose in Axiom 6 a relatively strong sufficient condition for incomparability —so that

Axiom 6 is satisfied by the vast majority of incomplete criteria defined on single acts proposed

in the literature— and a relatively weak sufficient condition for comparability in Axiom 7.

Our axiomatization maintains the assumption that preferences are complete over constant

acts, deemed as the simplest ones. Axiom 6 underscores the role of constant acts as bench-

marks for decision making: if the DM is unable to compare the act g to the constant act x

whenever she is unable to compare x to f , then she is not able to compare f and g. Accord-

ing to Axiom 7, if i) the DM cannot compare f to the constant x, while she declares x more

desirable than g and, on the other hand, ii) she cannot compare g to the constant act y, while

she declares f more desirable than y, then she declares f more desirable than g. Thus, two

specific aligned pieces of evidence are enough to conclude that an act is better than an other

one, and Axiom 7 may be seen as formulating a minimal departure from the completeness

of a standard expected utility preference relation —we refer the reader to Section 3.1.1 for

a more precise discussion.

Furthermore, in order to account for typical situations in which agents have to choose

between two options, even if they lack conviction to express a clear preference between them

in the first place, we study the completion of hope-and-prepare preferences.11 We demon-

strate that the invariant biseparable complete extension of a hope-and-prepare preference

admits an asymmetric12 α-maxmin expected utility (α-MEU) representation —and a stan-

dard α-maxmin representation if the hope-and-prepare preference is concordant. Notably,

the asymmetric α-MEU retains much of the tractability of the standard α-MEU —which is

beneficial for applications— while remaining flexible enough to accommodate mixed ambigu-

ity attitudes (Chandrasekher et al. (2022)).13 Importantly, in the representation we obtain,

the weight α does not depend on the considered acts, and is unique whenever the extended

hope-and-prepare preference is incomplete.

Finally, answering two natural questions of comparative statics that emerge from the

proposition of a new type of incomplete preference under ambiguity, we compare the degree

of incompleteness of our criterion to that of Bewley preferences (Bewley (2002)) and of

twofold preferences (Echenique et al. (2022)), and we provide a way to compare the ambiguity

11From a theoretical point of view, studying a completion of an incomplete preference relation enables to
use standard mathematical tools, for example for utility maximization and welfare analysis.

12“Asymmetric” refers to the fact that best and worst cases may be taken on different sets of scenarios.
13Specifically, it captures ambiguity-averse behavior for large/moderate-likelihood events, ambiguity-

seeking behavior for small-likelihood events, and source-dependent ambiguity attitudes (Chandrasekher et al.
(2022)).
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attitudes of two hope-and-prepare preferences.

Our paper is organized as follows: we define the formal framework and introduce our

criterion in Section 2. In Section 3, we give the main representation result and explore the

case in which the sets of scenarios used in the two assessments are equal. In Section 4, we

investigate the completion of our criterion. Section 5 is dedicated to the comparative statics

questions mentioned above. Section 6 provides an illustrative comparison of concordant

hope-and-prepare preferences to Bewley preferences, in the context of the aggregation of

opinions of experts. The conclusions are presented in Section 7. All proofs can be found in

the appendix.

1.1 Related literature

A DM hoping for the best while also preparing for the worst responds to uncertainty by

combining opposite ambiguity attitudes. In this perspective, one may interpret a DM with

a hope-and-prepare preference as requiring that her optimistic (ambiguity loving) self and

her pessimistic (ambiguity averse) self be unanimous for her to rank some act above an

other one. The idea that the DM consists of multiple (strategic) selves appears frequently

in behavioral economics, in particular in models of dynamic choice or choice within risky

environments.14 In recent works, Chandrasekher et al. (2022) and Xia (2020) provided

axiomatizations for preferences involving two selves, called by the former dual-self expected

utility. Their representation differs from ours in that the agent’s final decision is to be

interpreted as the result of a specific leader-follower game between an optimistic self and a

pessimistic self, whereas, in our representation, it is induced by a requirement of unanimity

imposed by the agent herself on the assessments of her two selves.15

Our representation is also motivated by the concept of obvious manipulation proposed

in the context of mechanism design by Troyan and Morrill (2020). A revelation mechanism

is said to be non-obviously manipulable if, for any agent and any potential untruthful report

from her, revealing her own type leads to a more desirable outcome in both of the following

cases: when the others’ reports are the most favourable to her, and when they are the least

favourable. In our model, in the same spirit, an option —such as an untruthful report in the

previous example— is only abandoned for an alternative if this alternative leads to preferred

14Thaler and Shefrin (1981), Bénabou and Pycia (2002), Fudenberg and Levine (2006), Brocas and Carrillo
(2008).

15At a hight-level, the difference of our approach with that of “Preparing for the Worst but Hoping for
the Best: Robust (Bayesian) Persuasion” (Dworczak and Pavan (2022)) is similar to the difference with
Chandrasekher et al. (2022): in the criteria studied in both of these papers, one of the (pessimistic or
optimistic) evaluations constrains the other. It is not the case with hope-and-prepare preferences in which
both evaluations are treated symmetrically.
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outcomes in both the best and the worst scenarios among given sets of probability measures.

The relation of our contribution to the concept of non-obvious manipulation mirrors that of

Echenique et al. (2022) to the concept of obvious dominance, due to Li (2017): informally,

when the set of scenarios according to which all acts are evaluated is the simplex, act f is

preferred to act g by a twofold multi-prior preference if and only if f obviously dominates g,

and, on the other hand, f is preferred to g by a hope-and-prepare preference if and only if f

dominates g in the sense of Troyan and Morrill (2020).16

Hope-and-prepare preferences define a partial order on acts. Pioneering work by Au-

mann (1962), Bewley (2002) and Dubra et al. (2004) studied the representation of incom-

plete preferences under risk and uncertainty. Incomplete preferences in non-deterministic

environments have been the object of a growing literature: see, for example, Nascimento

and Riella (2011) Galaabaatar and Karni (2012), Efe et al. (2012), Faro (2015), Minardi and

Savochkin (2015), Hill (2016), Karni (2020), Cusumano and Miyashita (2021) and Echenique

et al. (2022). The closest model of incomplete preference to ours, apart from those studied

in Bewley (2002) and Echenique et al. (2022), both compared to ours in the introduction,

is introduced in Nascimento and Riella (2011). As a special case of their main result, they

study a criterion in which the DM considers several sets of scenarios, in each of which the

performance of an act is evaluated according to the worst-case expected utility level. Then,

an act is preferred to an other one if and only if it performs better in each set of scenar-

ios. Hope-and-prepare preferences enable to capture a different type of ambiguity attitude,

through the consideration of the optimistic assessment. We discuss in more details how our

work relates to Bewley (2002), Nascimento and Riella (2011) and Echenique et al. (2022) in

the next sections.

In line with Hurwicz’s approach for decision making under complete ignorance (Hurwicz

(1951)), the α-MEU model was proposed to capture the idea that, under ambiguity, worst

and best expected utility levels, over one set of probability measures, can serve as sufficient

statistics for the DM: she then computes an α-weighted average of these levels (Marinacci

(2002), Kopylov (2002), Ghirardato et al. (2004)).17 Among the recent explorations of (vari-

ants of) the α-maxmin model,18 the one of Frick et al. (2022) is particularly important for

the way we characterize the asymmetric α-maxmin model as representing the completion of

16With this same set of scenarios, one can also recover the concept of strategy-proofness from Bewley
preferences (Bewley (2002)).

17Let us mention two alternatives to the standard α-MEU model. The geometric α-MEU model (Binmore
(2009)) uses a geometric weighted average. More recently, Grant et al. (2020) introduced and characterized
a general aggregation of best-case and worst-case expected utility representations, referred to as ordinal
Hurwicz expected utility.

18Chateauneuf et al. (2007), Eichberger et al. (2011), Gul and Pesendorfer (2015), Frick et al. (2022),
Klibanoff et al. (2022), Hartmann (2023), Hill (2023), Chateauneuf et al. (2024).
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hope-and-prepare preferences.19 In the objective and subjective rationality framework pro-

posed by Gilboa et al. (2010), they show that the invariant biseparable complete extension

of a Bewley preference admits a standard α-MEU representation. We show that the asym-

metric α-maxmin representation characterizes the invariant biseparable complete extension

of a hope-and-prepare preference relation. It reduces to standard α-maxmin in the case of a

concordant hope-and-prepare preference relation. Beyond the fact that we consider the com-

pletion of a new type of preferences, our result has three salient feature: the representation

is asymmetric in general, α does not depend on the considered acts, and is unique.20

2 Setup and representation

2.1 Model

Our analysis is conducted in the classical framework proposed by Anscombe and Aumann

(1963). Uncertainty is modeled through a set S of states of the world, endowed with an

algebra Σ of subsets of S called events, and a non-empty set of consequences X, which is

a non-singleton convex subset of a real vector space. A simple act is defined as a function

f : S → X which takes finitely many values and is measurable with respect to Σ; we denote

by F the set of all simple acts. The mixture of two simple acts f and g, for any α ∈ [0, 1],

denoted by αf + (1 − α)g, is then defined by setting, for each s ∈ S, [αf + (1 − α)g](s) =

αf(s) + (1 − α)g(s). With the usual slight abuse of notation, for all x ∈ X, we use x to

denote the constant act defined by fx(s) = x for all s ∈ S. We use ∆ to denote the set of

all finitely additive probability distributions on (S,Σ), endowed with the weak* topology.21

We refer to a measure p ∈ ∆ as a scenario according to which simple acts are evaluated.22

We consider a DM whose preference is represented by a binary relation ≻ ⊆ F × F . It

is a partial ranking over acts and we use the standard notation f ≻ g to denote (f, g) ∈ ≻.

If f č g and g č f , we write f ’ g, and say that f and g are incomparable.23 We interpret

f ≻ g as reflecting the fact that the DM considers that f is more desirable than g with

sufficient conviction. In other words, in each pairwise comparison, one act (g in the previous

notation) has the role of a default that would be abandoned only if the DM had enough

19Recall that “asymmetric” refers to the fact that best and worst cases may be taken on different sets of
scenarios.

20More precisely, α is unique whenever the considered hope-and-prepare preference relation is not complete.
21The set of finitely additive bounded measures on (S,Σ) is the dual of the set of all measurable real-

valued bounded functions on (S,Σ). Thus the weak* topology on ∆ is defined according to the following
convergence notion: we say that a sequence {pn} of elements of ∆ converges to p ∈ ∆ if for all measurable
bounded function φ : S → R,

∫
φdpn converges to

∫
φdp.

22From now on, we refer to simple acts as “acts”.
23Accordingly, we say that f and g are comparable if either f ≻ g or g ≻ f .
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reasons to believe that the alternative performs better.

We denote the set of vectors whose k elements are non-negative by Rk
+, the set of vectors

whose k elements are positive by Rk
++, for any natural number k. For a given set A, |A|

denotes the cardinality of A.

2.2 Hope-and-prepare preferences

2.2.1 Definition

Our representation involves multiple priors:24 the DM has a set of relevant beliefs according

to which she evaluates acts.

Definition 1. A binary relation ≻ is a hope-and-prepare preference if

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

,

where u is a non-constant affine function defined on X, and C and D are two compact and

convex subsets of ∆ with C ∩D ̸= ∅.
The representation is concordant if C = D.

We sometimes write that ≻ admits the representation pu,C,Dq to refer to the hope-and-

prepare representation given in Definition 1. We obtain in our axiomatization the uniqueness

up to affine transformation of u, and the uniqueness of C and D. We sometimes write, then,

as a shortcut, that ≻ admits the unique representation (u,C,D).25

2.2.2 Discussion

Take such a preference relation ≻, with representation (u,C,D). An act f is preferred to an

act g if and only if f gives a higher expected utility than g when they are evaluated according

to their best-case scenario in D, and gives a higher expected utility than g when they are

evaluated according to their worst-case scenario in C. This conjunction of an optimistic (or

ambiguity-seeking) assessment and of a pessimistic (or ambiguity-averse) assessment models

a DM hoping for the best scenario to realize, while also preparing for the worst one, when

she evaluates each option.

24Etner et al. (2012) and Gilboa and Marinacci (2016) both provide a review of the ways in which ambi-
guity, and ambiguity attitudes, have been modeled in order to offer alternatives to the traditional Bayesian
framework. Multiple prior models stand out as one of the main lines of research.

25As opposed to writing that ≻ admits representation (u,C,D), where u is unique, up to affine transfor-
mation, and C and D are unique.
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The combination of two such opposite ambiguity attitudes may also be interpreted in the

perspective of a DM consisting of multiple selves: for the DM to consider with sufficiently

strong conviction that an act f is more desirable than an act g, it is necessary, and sufficient,

that her optimistic self and pessimistic self, be unanimous over the ranking of f and g.26

The case of concordant preferences calls for further interpretation. Let ≻ be a hope-

and-prepare preference relation with representation (u,C,C). Then, the DM evaluates any

act f in terms of its range R(f) = {
∫
u(f)dµ : µ ∈ C} of possible expected utility levels,

which, as C is convex and compact, is a closed interval. Consider an other act g ∈ F and

suppose that R(f) = [a, b] and R(g) = [c, d]. Then f is preferred to g if and only if a > c

and b > d. This intuitive criterion for comparing ranges of expected utility levels works as

an asymmetric version of the strong set order, applied to the special case of intervals: f is

preferred to g if and only if any expected utility level that is attainable from g but not from

f is below any expected utility level that is attainable from f , and there exists at least one

level that is indeed attainable from g but not from f .

At this point, it is interesting to describe how the way ranges are compared according to

concordant hope-and-prepare preferences can be formally related to the way in which they

are compared according to concordant twofold preferences, introduced and axiomatized by

Echenique et al. (2022).

Definition 2. (Echenique et al. (2022)) A binary relation ≻ is a (multi-prior) twofold pref-

erence if

f ≻ g ⇐⇒ min
p∈C

∫
u(f)dp > max

p∈D

∫
u(g)dp,

where u is a non-constant affine function defined on X, C and D are two compact and convex

subsets of ∆ with C ∩D ̸= ∅. The representation is said concordant if C = D.27

Consider ≻H a concordant hope-and-prepare preference and ≻T a concordant twofold

preference with the same representing utility function u on X and the same set of scenarios

C ∈ ∆. For any two real intervals I and I ′, we say that I lies above I ′ whenever u > v for any

u ∈ I, v ∈ I ′. One has f ≻T g if and only if the interval R(f) lies above the interval R(g),

and f ≻H g if and only if R(f) \R(g) is non-empty and lies above the interval R(g) \R(f),
also non-empty.

Accordingly, given a set of scenarios, for a concordant hope-and-prepare preference and

a concordant twofold preference, of which the restrictions to outcomes (constant acts) are

26In a previous version of this work, hope-and-prepare preferences were called unanimous dual-self prefer-
ences.

27They obtain the uniqueness, up to affine transformation, of u, and the uniqueness of C and D in their
axiomatization.
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equal, the former is always more complete than the latter, in the sense that it is an or-

der extension of it —a general statement, beyond the case of concordant preferences, is

given in Proposition 1. This observation is the basis on which we compared concordant

hope-and-prepare preferences to concordant twofold preferences in the NBA example of the

introduction, and a similar comparison to Bewley preferences should be made (again, see

Proposition 1):

Definition 3. (Bewley (2002)) A binary relation ≻ is a (multi-prior) Bewley preference if

f ≻ g ⇐⇒
∫
u(f)dp >

∫
u(g)dp for all p ∈ C,

where u is a non-constant affine function defined on X, C is a non-empty compact and

convex subset of ∆.28

As we highlighted in the NBA example, with hope-and-prepare preferences, the trade-off

between decisiveness and conviction is addressed in a way that is more favorable to deci-

siveness, compared to twofold preferences and to Bewley preferences. That is, our criterion

still reflects the necessity for DM to have sufficient conviction when declaring an act more

desirable than an other one, while it induces more choices. The two original axioms involved

in our characterization are interpreted along this line in Section 3.1.1.

When the preference relation ≻ is not concordant, different collections of scenarios are

considered under the optimistic evaluation and under the pessimistic one. The fact that

hope and preparation in our criterion involve different scenarios can capture the influence

of non payoff-relevant elements. In practical decisions, DMs may have subjective views on

what constitutes “good” and “bad” states, beyond the outcomes that acts yield in these

states. Then, when thinking optimistically, they tend to favor beliefs that assign higher

probabilities to “good” states, while, when thinking pessimistically, they tend to focus on

beliefs assigning higher probabilities to “bad” states. When hoping, a DM may, for instance,

only consider scenarios in which states where the weather is “nice” have a high probability,

even if the weather does not affect their monetary payoffs.

Taking the dual-self interpretation more literally, a DM with non-concordant preferences

does not simply combine the evaluations of two selves with opposite ambiguity attitudes, but

also with different beliefs. Yet, both selves must agree on at least one belief; this common

prior may represent the scenario that the DM considers as the most plausible, or, more

generally, a reference scenario.

28Similarly to the expression we used for our criterion, we will say that the twofold preference ≻T admits
the unique representation (u,CT , DT ), and that the Bewley preference ≻B admits the unique representation
(u,CB) to refer to the fact that u is unique up to affine transformation, and CT , DT and CB are unique.
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In addition, the special case in which the discrepancy between the sets of scenarios takes

the form of inclusion reflects the difference between the degree of preference for uncertainty

of the optimistic evaluation and the degree of aversion to uncertainty of the pessimistic

one (see Proposition 2 in Section 5). Let ≻ be a hope-and-prepare preference relation with

representation (u,C,D), such that D ⊂ C: the pessimistic evaluation is more pessimistic

than the optimistic evaluation is optimistic.

A special case of the preferences studied in Nascimento and Riella (2011) is, as ours,

defined by the conjunction of different assessments. These preferences are pre-orders,29 in

contrast to hope-and-preferences, in general. We thus adapt their definition —see Theorem

4 in Nascimento and Riella (2011)— by replacing weak inequalities by strict inequalities.

Definition 4. (Nascimento and Riella (2011)) A binary relation ≻ is a N&R preference if

f ≻ g ⇐⇒ min
p∈C

∫
u(f)dp > min

p∈C

∫
u(g)dp for all C ∈ C,

where u is a non-constant affine function defined on X, C is a class of non-empty compact

and convex subsets of ∆.

Our approach and criterion differ from those of Nascimento and Riella (2011) in several

aspects. In terms of methodology, in contrast to them, we provide an axiomatization directly

on the domain of simple acts.30 In addition, in our representation result, the pair of sets of

probability measures is unique.31

Furthermore, while the set C may be infinite in their model —the DM then takes decisions

based on the unanimity of an arbitrary, potentially infinite, number of selves— our criterion

requires the conjunction of merely two evaluations.

From a behavioral perspective, N&R preferences are based on the unanimity of a col-

lection of MEU representations, while hope-and-prepare preferences capture a mixture of

different ambiguity attitudes. Moreover, we emphasized the importance of the special case

of concordant hope-and-prepare preferences, defined by a very intuitive comparison of ranges

of expected utility: this has no counterpart in their model.

29That is, reflexive and transitive binary relations.
30Their result is obtained on the set of lotteries on simple acts.
31In their representation, C is not unique. The authors obtain the uniqueness of the closure of the convex

hull of C, where the set of subsets of the simplex is endowed with the Hausdorff topology.
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3 Representation results

3.1 Characterization of hope-and-prepare preferences

3.1.1 Axioms

We now proceed to an axiomatic characterization of hope-and-prepare preferences based on

the following seven axioms. Axioms 1, 2, 3 and 5 express common requirements, Axiom 4

was proposed in Echenique et al. (2022), Axioms 6 and 7 are original to this work.

Let us insist on the fact that all these axioms (except Axiom 2), in which constant acts

play a central role, are grounded on the basic idea that constant acts, because they are

simpler, are relevant reference points for decision making.

Axiom 1. Relation ≻ is asymmetric and transitive, and the restriction of ≻ to X is non-

trivial and negatively transitive.32

Axiom 2. For all triple (f, g, h) ∈ F3, the sets {α ∈ [0, 1] : αf + (1 − α)g ≻ h} and

{α ∈ [0, 1] : h ≻ αf + (1− α)g} are open.

Axiom 3. For all f, g ∈ F , x ∈ X, and α ∈ (0, 1), f ≻ g if and only if αf + (1 − α)x ≻
αg + (1− α)x.

The interpretation of the assumptions in Axiom 1 is well-known. In particular, on X,

≻ is the asymmetric part of a complete and transitive relation. Axiom 2 is the standard

Archimedean continuity condition adopted in models of decision under uncertainty. Axiom 3

is the independence axiom proposed by Gilboa and Schmeidler (1989) in their seminal paper

as a weakening of the independence axiom at play in the characterization of subjective

expected utility.

Axiom 4. For all x ∈ X, the sets {f ∈ F : f ≻ x} and {f ∈ F : x ≻ f} are convex.

Axiom 4 is identical to Axiom 4 in Echenique et al. (2022), which states that comparisons

to a given constant act should not be sensitive to hedging. Recall that since ≻ is asymmetric

and incomplete, in general, {f ∈ F : f ≻ x} is interpreted as the set of acts for which

the DM has sufficient conviction to consider them more desirable than the constant act

x. The convexity of {f ∈ F : f ≻ x} is interpreted in terms of uncertainty aversion:

an act obtained through hedging between two acts that provide sufficient evidence to be

declared more desirable than the constant act x is also considered more desirable than x with

sufficient conviction. The convexity of {f ∈ F : x ≻ f} is interpreted in terms of preference

32Negative transitivity of ≻ means that for all x, y, z ∈ X, if x č y and y č z then x č z.
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for uncertainty: when the DM has sufficient conviction to declare two uncertain acts less

desirable than the constant act x, then the DM also considers with sufficient conviction that

an act obtained through hedging between the two is less desirable than x.

Axiom 5. For all f, g ∈ F , if f(s) ≻ g(s) for all s ∈ S, then f ≻ g.

According to Axiom 5, if the outcome of an act is considered more desirable than the

outcome of an other act in each state of the world, then the first act is preferred to the second

one. In other words, according to a preference relation satisfying Axiom 5, the state-wise

dominance of an act f over an act g provides sufficient conviction to rank f above g. In the

perspective of the trade-off between decisiveness and conviction, we see this property as an

intuitive limitation of incomparability. While it is imposed in most approaches close to ours,

the strong degree of conservatism, or indecisiveness, of twofold preferences is rooted in the

fact that they violate it.33

We propose in Axiom 6 a relatively strong sufficient condition for incomparability —

equivalently, a relatively weak necessary condition for comparability— so that Axiom 6 is

satisfied by almost all (the asymmetric part of) the incomplete criteria comparing single

acts mentioned in Section 1.1, that is, almost all the incomplete criteria defined in a classical

Anscombe-Aumann framework mentioned in Section 1.1. More precisely, the (asymmetric

part of) the criteria proposed in Bewley (2002), Nascimento and Riella (2011), Efe et al.

(2012), Faro (2015), Cusumano and Miyashita (2021) and Echenique et al. (2022) all satisfy

Axiom 6 (see Appendix A).34 On the other hand, we impose a relatively weak sufficient

condition for comparability in Axiom 7.

We jointly discuss these axioms after we briefly present them.

Axiom 6. For all f, g ∈ F , if for all x ∈ X, f ’ x implies g ’ x, then f ’ g.

Axiom 6 underscores the role of constant acts as benchmark acts based on which com-

parisons of more complex acts are made: for the DM to express a preference between the

acts f and g, it is necessary that there exists a constant act x that the DM prefers to either

f or g, while she cannot compare x with the other act.35

Axiom 7. For all f, g ∈ F , and for all x, y ∈ X, if f ’ x, x ≻ g, g ’ y and f ≻ y then

f ≻ g.

33See Cusumano and Miyashita (2021) and Echenique et al. (2022).
34There is one incomplete criterion mentioned in Section 1.1 that is defined on single acts and that may

not satisfy Axiom 6, the one proposed in Hill (2016).
35Note that we do not impose that whenever there exists x ∈ X such that f ’ x and g ’ x, then f ’ g

(which is Axiom 5 in Echenique et al. (2022)). Actually, our criterion does not satisfy this property in
general.
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While the DM cannot compare f to the constant x, she declares x more desirable than g.

On the other hand, while she cannot compare g to the constant act y, she declares f more

desirable than y. Axiom 7 implies that in the presence of such consonant conclusions as to

the comparison of f and g, the DM considers f , with sufficient conviction, more desirable

than g.

As we already highlighted, given the complexity involved in the evaluation of uncertain

acts, constant acts, which are the simplest acts, are likely to be used as comparison devices.

A straightforward way to use them in comparing two acts, when preferences may be incom-

plete, then consists in looking for a constant act that is incomparable to one of them and

comparable to the other one. Each such constant act then provides a piece of evidence as

to the comparison between the two uncertain acts —the question is then to determine what

are sufficient pieces of evidence.

Consequently, given two acts f and g, the DM we model compares to g all constant acts

that are incomparable to f , and vice versa. This process gives rise to three possible cases:

(i) for all x ∈ X such that f ’ x, g ’ x;

(ii) for all x ∈ X such that g ’ x, f ’ x; and

(iii) there are x, y ∈ X such that [f ’ x and g and x are comparable] and [g ’ y and f and

y are comparable].

In the first two cases, there is no piece of evidence on which the DM may base her

comparison: Axiom 6 implies that f and g are incomparable.

In the last case, there are four possible situations; it suffices to consider the following

two, to which the other ones are symmetric:

(a) [f ’ x and x ≻ g] combined with [y ≻ f and g ’ y]; and

(b) [f ’ x and x ≻ g] combined with [f ≻ y and g ’ y].

In case (a), the first piece of evidence favors f while the second favors g. In contrast, in

case (b), the two pieces of evidence go in the same direction, favoring f : according to Axiom

7, this is sufficient to conclude that f is more desirable than g.

There is a sense in which Axiom 7 expresses, for an asymmetric and incomplete preference

relation, a minimal departure from the completeness of weak orders for which all acts admit

a certainty equivalent.36 Using the previous formulation, for these weak orders, one piece of

36That is, binary relations Á which are reflexive, transitive and complete, such that, for all f ∈ F , there
is x ∈ X such that f ∼ x.
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evidence is sufficient: if f ∈ F has a certainty equivalent x ∈ X and x is strictly preferred

to g ∈ F , then f is strictly preferred to g. For an asymmetric and incomplete preference

relation, Axiom 7 involves no more than one piece of evidence based on a constant act

incomparable to f and one piece of evidence based on a constant act incomparable to g.

Axiom 7 is violated by twofold preferences, Bewley preferences and N&R preferences in

general. Through the satisfaction of both Axioms 6 and 7, in particular, hope-and-prepare

preferences address the trade-off between decisiveness and conviction in a new way.

We sometimes refer to the classical Axioms 2, 3 and 5 as continuity, certainty indepen-

dence and monotonicity.

3.1.2 First characterization theorem

Theorem 1. A binary relation ≻ satisfies Axioms 1-7 if and only if there exist

• a non-constant affine function u : X → R, unique up to positive affine transformation,

• a unique pair (C,D) of non-disjoint convex compact subsets of ∆,

such that, for all f, g ∈ F ,

f ≻ g ⇔

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

,

that is, ≻ admits the hope-and-prepare representation (u,C,D), where C and D are unique,

and u is unique up to positive affine transformation.

We now give a brief sketch of the proof and highlight some interesting properties of ≻
that we derive.37 First of all, Axioms 1-3 guarantee that there exists a non-constant affine

function u : X → R, unique up to affine transformation, representing ≻ on X.

The proof consists in defining two binary relations on F , denoted ≻p and ≻o, such that

for any f, g ∈ F , f ≻ g if and only if f ≻p g and f ≻o g —we provide the precise definitions

of these relations below. In that perspective, the following two lemmas are crucial.

Lemma. For all f ∈ F , the set {x ∈ X : x ’ f} is non-empty.

Lemma. For all f ∈ F , and x, y, z ∈ X, if x ’ f , f ≻ y, and z ≻ f , then z ≻ x ≻ y.

This second result has an interesting interpretation. While the DM cannot assert with

sufficient conviction that f is more desirable than the constant act x, she considers with

37The following lemmas are not presented here in the order in which they are proved.
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sufficient conviction that f is more desirable than the constant act y and worse than the

constant act z. We show that in such a case, the DM considers, with sufficient conviction,

that z is more desirable than x, and that x is more desirable than y.

From the original relation ≻, we define two preference relations on F as follows:

g ≻p f ⇐⇒ g ≻ x and x ’ f for some x ∈ X,

g ≻o f ⇐⇒ x ’ g and x ≻ f for some x ∈ X.

The subscripts p and o are used to denote respectively a pessimistic and an optimistic

assessment, based on≻, where these two terms are justified given the way the incomparability

to a constant act is treated. Let us describe the interpretation of ≻p: this relation is

pessimistic in the sense that for the default act f , whenever there is a constant act x such that

f cannot be compared with sufficient conviction to x, while g is considered more desirable

than x with sufficient conviction, then ≻p declares f to be worse than g.

We then proceed by showing that ≻p and ≻o are asymmetric and negatively transitive.

This enables us to define ∼p by f ∼p g if and only if f čp g and g čp f , for all f, g ∈ F , and

to define Áp by f Áp g if and only if either f ≻p g or f ∼p g, for all f, g ∈ F . We define in

the same way ∼o and Áo. Then it is clear that Áp and Áo are weak orders,38 and we show

that they are continuous and monotone, that they satisfy the classical properties of certainty

independence, and, respectively, aversion to ambiguity and preference for ambiguity.39

As a consequence, Áp can be represented by the function f 7→ minp∈C
∫
up(f)dp, and

Áo can represented by the function f 7→ maxp∈D
∫
uo(f)dp, where C and D are non-empty

convex compact subsets of ∆, and up and uo are two affine functions on X. We conclude

that there is no loss of generality in assuming up = uo = u, and that C ∩D ̸= ∅, using the

separating hyperplane theorem on these subsets of ∆ endowed with the weak* topology.

Note that in this sketch of proof, the relation between ≻ and the two weak orders ≻p and

≻o is established before the minmax and maxmax representations of ≻p and ≻o: Axioms 1-3

and Axioms 5-7 are necessary and sufficient for a general representation that we describe in

Appendix B.

38They are non-trivial asymmetric and negatively transitive binary relations.
39Definitions of these properties for weak orders are provided in the appendix.
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3.2 Characterization of concordant hope-and-prepare preferences

3.2.1 Axioms

The necessary and sufficient conditions identified in Echenique et al. (2022) for the identity

C = D to hold in their twofold multiprior preference representation are also necessary and

sufficient in our representation.40 Before introducing them, let us specify that, as suggested

in the sketch of the proof of Theorem 1, when ≻ satisfies Axioms 1-3, we define on X the

relation Á by x Á y if and only if y č x for all x, y ∈ X. Clearly, Á on X is asymmetric and

negatively transitive; and ’ is equivalent to ∼, the symmetric part of Á, on X.

We use the notion of complementary acts (Siniscalchi (2009)) to identify comparisons that

are, under Axioms 1-7, characteristic of the uncertainty aversion of the agent’s pessimistic

evaluation, and of the preference for uncertainty of her optimistic evaluation, respectively.

Two acts f and g are complementary if they perfectly hedge against each other in the sense

that their equal-weight-mixture is equivalent to a constant act:

1

2
f(s) +

1

2
g(s) ∼ 1

2
f(s′) +

1

2
g(s′) for all s, s′ ∈ S.

Axiom 8. If f and g in F are complementary, then f ≻ 1
2
f + 1

2
g implies 1

2
f + 1

2
g ≻ g.

Consider two complementary f, g ∈ F , and a preference ≻ with representation (u,C,D)

on F . Assume f ≻ 1
2
f + 1

2
g, as in Axiom 8 and let x ∈ X denote a constant act such that

x ∼ 1
2
f + 1

2
g. It cannot be the case that g ≻ 1

2
f + 1

2
g, because this would imply f ≻ x and

g ≻ x, and thus 1
2
f + 1

2
g ≻ x —a contradiction.

In other words, if f ≻ 1
2
f + 1

2
g, then either 1

2
f + 1

2
g ’ g or 1

2
f + 1

2
g ≻ g. Axiom 8

requires that the second case hold, and this requirement is interpreted as a consequence

of the simplicity of constant acts. Indeed, by transitivity, in this second case, one has, by

transitivity, f ≻ g, so that Axiom 8 states that whenever f ≻ 1
2
f + 1

2
g, one has f ≻ g,

that is, it should always be easier for the DM to assess whether f is more desirable than the

essentially constant act 1
2
f + 1

2
g than to assess whether f is more desirable than g.

The interpretation of Axiom 9 is similar: it states that for complementary acts f, g ∈ F ,

it should always be easier for the DM to assess whether the essentially constant act 1
2
f + 1

2
g

is more desirable than g than to assess whether f is more desirable than g.

Axiom 9. If f and g in F are complementary, then 1
2
f + 1

2
g ≻ g implies f ≻ 1

2
f + 1

2
g.

40The proof of the following result is a direct adaptation of the proof of Proposition 1 in their paper.
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3.2.2 Second characterization theorem

Theorem 2. The following statements hold:

(i) A hope-and-prepare preference ≻, with unique representation (u,C,D), satisfies Axiom

8 if and only if D ⊆ C.

(ii) A hope-and-prepare preference ≻, with unique representation (u,C,D), satisfies Axiom

9 if and only if C ⊆ D.

In particular, a binary relation ≻ satisfies Axioms 1-9 if and only if there exist

• a non-constant affine function u : X → R, unique up to positive affine transformation,

• a unique convex compact subset of ∆, denoted C, such that, for all f, g ∈ F ,

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈C
∫
u(f)dp > maxp∈C

∫
u(g)dp

.

When ≻ admits a concordant representation, acts are evaluated according to the mini-

mum and the maximum expected utility level attained on a common set of scenarios. On

the other hand, when ≻ satisfies both Axiom 8 and 9, for any simple complementary acts f

and g, f ≻ 1
2
f + 1

2
g if and only if 1

2
f + 1

2
g ≻ g. In other words, for complementary acts, it is

always as easy to determine whether their equal-weight-mixture is more desirable than one

of them as it is to determine whether one of them is more desirable than the mixture.

As a recall, according to a concordant hope-and-prepare preference relation, acts are

evaluated according to the interval of all expected utility levels that they induce across all

scenarios in a given set. More precisely, an act f is preferred to an act g if and only if any

expected utility level that is attainable from g but not from f is below any expected utility

level that is attainable from f , and there exists at least one level that is indeed attainable

from g but not from f .

4 Complete extension of hope-and-prepare preferences

In this section, we will explore the extension of hope-and-prepare preferences to complete

preferences. We will focus on the invariant biseparable complete extension; these define a

broad class of complete preferences that nests the majority of preferences studied in the

literature.
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We refer to an asymmetric complete and negatively transitive binary relation on F sat-

isfying Axioms 2, 3 and 5 as invariant biseparable.41 When it is, in addition, a weak order,

it satisfies the axioms characterizing expected utility, apart from the independence axiom,

which is weakened to the certainty independence property introduced in Gilboa and Schmei-

dler (1989).

Definition 5. A preference relation ≻ on F admits an asymmetric α-MEU representation

if there exist α ∈ [0, 1], two non-disjoint compact convex subsets C and D of ∆, and a

non-constant affine function u : X → R such that for all f, g ∈ F ,

f ≻ g ⇐⇒ αmin
p∈C

∫
u(f)dp+ (1− α)max

p∈D

∫
u(f)dp

> αmin
p∈C

∫
u(g)dp+ (1− α)max

p∈D

∫
u(g)dp.

We will refer to such representation as a (u,C,D, α) representation.

Remarkably, Chandrasekher et al. (2022) show that the asymmetric α-MEU, while re-

taining the tractability property of the standard α-MEU, is flexible enough to accommo-

date ambiguity-averse for large/moderate-likelihood events but ambiguity-seeking for small-

likelihood events and source-dependent ambiguity attitudes.

Standard α-MEU criteria are obtained if C = D in Definition 5, and the following result,

as a particular case, characterizes them as invariant bi-separable extensions of concordant

hope-and-prepare preferences.

Theorem 3. The following conditions are equivalent when ≻ is a hope-and-prepare prefer-

ence with unique representation (u,C,D):

(i) ≻∗ is an invariant biseparable preference and an extension of ≻.

(ii) ≻∗ admits an α-maxmin expected utility representation (u,C,D, α) in which α is unique

whenever ≻ is not complete.

41Ghirardato et al. (2004) originally used the expression “invariant biseparable preferences” when studying
weak-orders. For an asymmetric complete and negatively transitive binary relation ≻ on F , as for ≻p and
≻o in Section 3, we define ∼ by f ∼ g if and only if f č g and g č f , for all f, g ∈ F , and Á by f Á g if
and only if either f ≻ g or f ∼ g, for all f, g ∈ F . Then, in the proof of Theorem 3, we show that Á∗ is an
“invariant biseparable preference” in the sense of Ghirardato et al. (2004).
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5 Comparison of incomplete criteria

5.1 Degree of incompleteness

We have stated that with hope-and-prepare preferences, in comparison to Bewley preferences

and twofold preferences, the trade-off between decisiveness and conviction is addressed in

a way that is more favorable to decisiveness. The criterion we use to determine whether a

binary relation is more conservative than an other one pertains to their respective degree of

incompleteness.

Definition 6. Given two preference relations ≻1 and ≻2 on F , we say that ≻1 is more

conservative than ≻2 if ≻2 is an extension of ≻1, that is, for all f, g ∈ F ,

f ≻1 g implies f ≻2 g.

The next proposition identifies necessary and sufficient conditions under which a hope-

and-prepare preference relation is an extension of a Bewley or of a twofold preference relation.

Proposition 1. Let ≻H be a hope-and-prepare preference with unique representation (u,CH , DH).

Let ≻T be a twofold multiprior preference with unique representation (u,CT , DT ). Let ≻B be

a Bewley preference with unique representation (u,CB). Then,

(i) the preference relation ≻B is more conservative than ≻H if and only if CH ∪DH ⊆ CB;

(ii) the preference relation ≻T is more conservative than ≻H if and only if CH ⊆ CT and

DH ⊆ DT .

Remark 1. A direct consequence of this proposition and Proposition 4 in Echenique et al.

(2022) is that if CH ∪DH ⊆ CB ⊆ CT ∩DT , in particular if CH = DH = CB = CT = DT ,

then ≻T is more conservative than ≻B, which is more conservative than ≻H .

5.2 Ambiguity attitudes

We are able to compare ambiguity attitudes displayed by different hope-and-prepare prefer-

ences using the classical comparative statics notions of Ghirardato and Marinacci (2002).

Definition 7. Given two preference relations ≻1 and ≻2 on F ,

(i) ≻1 is more ambiguity averse than ≻2 if, for all f ∈ F and x ∈ X, f ≻1 x implies

f ≻2 x.
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(ii) ≻1 is more ambiguity loving than ≻2 if, for all f ∈ F and x ∈ X, x ≻1 f implies

x ≻2 f .

An agent is more ambiguity averse than an other one if she is less inclined to choose an

uncertain act f over a constant act x. On the other hand, an agent is more uncertainty

loving than an other one if she is more inclined to stick to an uncertain act f than to switch

to a constant act x. The next result characterizes ambiguity attitudes for hope-and-prepare

preferences.

Proposition 2. Let ≻1 and ≻2 be two hope-and-prepare preference relations with unique

representation (u,C1, D1) and (u,C2, D2), respectively. Then,

(i) ≻1 is more ambiguity averse than ≻2 if and only if C2 ⊆ C1.

(ii) ≻1 is more ambiguity loving than ≻2 if and only if D2 ⊆ D1.

For a hope-and-prepare representation (u,C,D), the two sets of priors C and D represent

the level of pessimism and optimism related to the DM’s ambiguity attitudes. More precisely,

the relationship C2 ⊆ C1 means that, in the worst scenario, the level of welfare attained by

the agent if she has preference relation ≻1 is lower than the one attained if she has preference

relation ≻2. Similarly, D2 ⊆ D1 means that, in the best scenario, the level of welfare attained

by the agent if she has preference relation ≻1 is higher than the one attained if she has

preference relation ≻2.

Based on Proposition 2 (i), by comparing the concordant preference≻ with representation

(u,C,C) to the non-concordant preference ≻1 with representation (u,C1, C), with C1 ⊂ C,

we can say that ≻1 is more ambiguity averse than it is ambiguity loving. Similarly, the non-

concordant representation ≻2 with representation (u,C,D2), with D2 ⊂ C, can be said to be

more ambiguity loving than it is ambiguity averse. Then, a DM with concordant preferences

is as ambiguity loving as she is ambiguity averse, or, in other words, her pessimistic evaluation

is as pessimistic as her optimistic evaluation is optimistic.

We end this subsection by briefly discussing the relation between the degree of conser-

vatism of a hope-and-prepare preference relation and the attitude towards ambiguity that

it displays. It is easy to see that if ≻1 and ≻2 are hope-and-prepare preferences, and if ≻1

is more conservative than ≻2, then ≻1 is both more ambiguity averse and more ambiguity

loving than ≻2. Does the converse statement hold ? This question is all the more natural

that if ≻1 and ≻2 are twofold preferences, then ≻1 is more conservative that ≻2 if, and

only if, ≻1 is more ambiguity averse and more ambiguity loving than ≻2.
42 An example in

Appendix C shows that the answer is negative for hope-and-prepare preferences.

42See Corollary 1 in Echenique et al. (2022).
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6 Aggregating the opinion of experts with hope-and-

prepare preferences

Numerous economic decisions under uncertainty, such as those related to fiscal policy and

those addressing climate change, often hinge on the guidance provided by groups of experts,

who frequently hold conflicting “opinions.” We propose a simple illustration, in the context

of the aggregation of conflicting opinions among experts, in which the fact that the planner’s

decisions are taken according to a hope-and-prepare preference relation rather than according

to a Bewley one reflects her preference for decisiveness.

Due to the complexity of the issue at hand, the opinions of experts may encompass

several probability distributions (scenarios) over payoff-contingent states. Following Danan

et al. (2016), we assume that experts have Bewley preferences, which expresses, given a set

of plausible scenarios, the need of experts to have a strong conviction in order to report to

the planner (the DM) that an option is better than an other one:43

“[...] a given individual may also consider more than one model to be plausible—or

have an imprecise belief. For such an individual, which of two policies yields the highest

expected utility may depend on the model considered. When a policy yields a higher

expected utility than another one for all plausible models, we say that the individual

unambiguously prefers the former policy to the latter. Unambiguous preferences are

thus robust to belief imprecision.”

Let N = {1, 2, . . . , n} be a finite set of experts. Expert j ∈ N has a preference ≻j

on F . We use ≻0 to denote the DM’s preference on F . We suppose that, for all i ∈ N ,

expert i’s preference is a Bewley preference with unique representation (u,Ci). We thus

assume in particular that there is no diversity of preferences over outcomes, which is a

distinctive element of the theory of the aggregation of opinions, compared to the theory of

the aggregation of preferences. We study how ≻0 should depend on (≻j)j∈N and impose the

two following conditions:

Axiom 10 (Pareto). For all f, g ∈ F , if f ≻i g for all i ∈ N , then f ≻0 g.

Axiom 11 (Caution for incomparability). For all f ∈ F and x ∈ X, if there exists

i ∈ N such that f ’i x, then f ’0 x.

The Pareto condition is the standard one. It asserts that the DM should follow the com-

parisons expressed by experts when they are unanimous : if all experts prefer act f to act g,

43In particular, given this set of scenarios, the condition under which they have sufficient conviction that
an option is better than an other one is stronger than if they had a concordant hope-and-prepare preference
relation.
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the DM should also favor f over g. Caution for incomparability focuses on situations with-

out clear comparisons. Based on the idea that the reason why the DM wants to rely on the

opinions of experts to take decisions is that the issue at hand is crucial to her, it states that

if some experts struggle to compare act f to a constant act x, while comparisons involving

at least one constant act are simpler, the DM should treat these acts as incomparable.

Interestingly, the result below demonstrates that these two axioms imply that the rule for

aggregating the beliefs of experts is the same when the DM adopts a Bewley criterion as when

she adopts a concordant hope-and-prepare one: the set of plausible scenarios considered by

the DM is the same. The relative merits of the two criteria then depend on the view of the

DM as to the trade-off between conviction and decisiveness. If the DM wants to be more

decisive, she should adopt the hope-and-prepare criterion. Conversely, if the DM prioritizes

having stronger conviction in her decisions, the Bewley criterion, as considered by Danan

et al. (2016), would be more suitable.44

For all P ⊆ ∆, we use co(P ) to denote the convex hull of P .

Proposition 3. Suppose for all i ∈ N , ≻i is a Bewley preference with unique representation

(u,Ci), and either of the following holds:

• ≻0 is a hope-and-prepare preference with unique representation (u,C0, C0), or

• ≻0 is a Bewley preference with unique representation (u,C0).

Then,

(i) Pareto is satisfied if and only if C0 ⊆ co p
⋃n

i=1Ciq.

(ii) Caution for incomparability is satisfied if and only if co p
⋃n

i=1Ciq ⊆ C0.

In particular, when both conditions are met, C0 = co p
⋃n

i=1Ciq.

7 Conclusion

We provided a new perspective on the analysis of incomplete preferences under uncertainty

by introducing and characterizing a new decision criterion involving multiple priors —which

constitutes a translation and a generalization of the domination concept at work in the

notion of non-obvious manipulability. It is based on a requirement of unanimity between an

44This result shows in particular that a concordant hope-and-prepare preference relation, which, given a
set of scenarios, is more complete than a Bewley preference relation, is still compatible with the limitation
of comparability embedded in our caution axiom.
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optimistic and a pessimistic evaluation reflecting the behavior of a DM who hopes for the best

while she also prepares for the worst. When both of these evaluations are computed according

to the same set of scenarios, hope-and-prepare preferences compare ranges of expected utility

according to a strict version of the well known and commonly used strong set order.

Comparing hope-and-prepare preferences to the two closest incomplete criteria proposed

in this framework —Bewley and twofold preferences— we argued, and made visible in our

axiomatization, that the trade-off between decisiveness and conviction is addressed in a way

that is more favorable to decisiveness.

We showed that an invariant biseparable completion of a hope-and-prepare preference

relation necessarily admits a unique asymmetric α-maxmin representation.

Finally, we proved that the rule for aggregating the opinions of experts is, under two

conditions imposed on the decisions of the DM, the same whether she has a Bewley criterion

or a concordant hope-and-prepare one: then, we interpreted the adoption of one or the other

criteria as a choice between the strength of her conviction and her ability to take decisions.

Appendix

A Discussion of Axiom 6

It is obvious that Axiom 5 in Echenique et al. (2022) implies our Axiom 6: twofold preferences

satisfies Axiom 6. Let us prove that Bewley preferences also satisfy Axiom 6.

Let ≻ be a Bewley preference relation with representation (u,C). Let x, y ∈ X and f, g ∈
F satisfying the assumptions of Axiom 6. Consider x ∈ X such that f ’ x. By definition of

Bewley preferences, there are p, p′ ∈ C such that
∫
u(f)dp′ ≥ u(x) ≥

∫
u(f)dp. Therefore,

the set {x ∈ X|f ’ x} is the set {x ∈ X|maxp∈C
∫
u(f)dp ≥ u(x) ≥ minp∈C

∫
u(f)dp}.

Since C is a compact set, there are x ∈ X and x ∈ X such that u(x) = maxp∈C
∫
u(f)dp and

u(x) = minp∈C
∫
u(f)dp. Then, f ’ x and f ’ x. Then, g ’ x and g ’ x, which implies

that there are p1, p2 ∈ C such that

u(x) = min
p∈C

∫
u(f)dp ≥

∫
u(g)dp1, and

u(x) = max
p∈C

∫
u(f)dp ≤

∫
u(g)dp2.

That is, g č f and f č g, i.e. g ’ f , which ends the proof.

Other incomplete preferences: Basic adaptations of this simple proof lead to the conclu-

sion that the (asymmetric part of the) criteria proposed by Nascimento and Riella (2011),
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Efe et al. (2012), Faro (2015), and Cusumano and Miyashita (2021) satisfy Axiom 6. Let

us note that some of these criteria allow for indifference: generically denoting them by Á,

we derive a representation of the associated asymmetric part, denoted ≻, by using the rep-

resentation of Á and defining ≻ by [f ≻ g] if and only if [[f Á g] and not[g Á f ]] for all

admissible acts f, g ∈ F .

B Intermediary representation result

When ≻ satisfies Axioms 1-3 and Axioms 5-7, we can still define the pessimistic and opti-

mistic relations ≻p and ≻o on F ,

g ≻p f ⇐⇒ g ≻ x and x ’ f for some x ∈ X,

g ≻o f ⇐⇒ x ’ g and x ≻ f for some x ∈ X,

and obtain that f ≻ g if and only if f ≻p g and f ≻o g.

We denote by B0(Σ) the set of all real-valued Σ-measurable simple functions, ensuring

that u(f) ∈ B0(Σ) for any function u : X → R. We take the terminology used in Ghirardato

et al. (2004). Accordingly, I : B0(Σ) → R is said to be constant-linear if, for all φ ∈ B0(Σ),

a ∈ R+, and b ∈ R, I(aφ+ b) = aI(φ)+ b, where, with a slight abuse of notation, we use b to

denote the constant function ϕ : s ∈ S 7→ b ∈ R. It is said monotonic if it weakly preserves

the usual partial order of B0(Σ).

Theorem 4. A binary relation ≻ satisfies Axioms 1-3 and Axioms 5-7 if and only if there

exist

• a non-constant affine function u : X → R, unique up to positive affine transformation,

• a unique pair of monotonic constant linear functionals Ip, Io : B0(Σ) → R, with

Ippu(h)q ≤ Iopu(h)q for all h ∈ F ,

such that, for all f, g ∈ F ,

f ≻ g ⇐⇒

Ippu(f)q > Ippu(g)q

Iopu(f)q > Iopu(g)q
.

The proof follows from the proof of Theorem 1 and Lemma 6, used in the proof of

Theorem 3.
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C Degree of conservatism and ambiguity attitudes of

hope-and-prepare preferences

Let ≻1 and ≻2 be two hope-and-prepare preferences with representations (u,C1, D1) and

(u,C2, D2), respectively. We identify conditions under which C2 ⊆ C1 and D2 ⊆ D1, but ≻1

is not more conservative than ≻2. Consider f, g ∈ F such that there are s1, s2 ∈ S satisfying
u(f(s1)) > u(g(s1))

u(f(s2)) < u(g(s2))

u(f(s)) = u(g(s)) for all s ̸= s1, s2.

Assume that the utility function u is such that u(f(s1)) = u(g(s2)) = 1 and u(f(s2)) =

u(g(s1)) = 0. Define p1, p2 and p3 as follows
p1(s1) =

1
3
, p1(s2) =

2
3
, p1(s) = 0 ∀s ̸= s1, s2

p2(s1) = 1, p2(s2) = 0, p2(s) = 0 ∀s ̸= s1, s2

p3(s1) =
2
5
, p3(s2) =

3
5
, p3(s) = 0 ∀s ̸= s1, s2.

Now let C1 = C2 = {p2}, D1 = co({p1, p2}) and D2 = co({p1, p3}), where co denotes the

operator taht associates with any subset of ∆ its convex hull in ∆. One readily obtains:

min
p∈C1

∫
u(f)dp = 1 > 0 = min

p∈C1

∫
u(g)dp,

max
p∈D1

∫
u(f)dp = 1 >

2

3
= max

p∈D1

∫
u(g)dp,

max
p∈D2

∫
u(f)dp =

2

5
<

2

3
= max

p∈D2

∫
u(g)dp,

that is, f ≻1 g but f č2 g.

D Proofs

D.1 Proof of Theorem 1

Only-if part. Assume that ≻ satisfies Axioms 1-7.

Consider the restriction of ≻ to X and, for all x, y ∈ X, define Á by x Á y if and

only if y č x . Clearly, Á is complete and transitive on X; and ’ is equivalent to ∼ on

X. By Axiom 3, for all x, y, z ∈ X, x Á y if and only if αx + (1 − α)z Á αy + (1 − α)z.
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Thus, by continuity of ≻, there exists an affine function u : X → R, unique up to affine

transformation, such that x Á y if and only if u(x) ≥ u(y). Also, u is non-constant as ≻ is

non-trivial.

Let us now introduce intermediary results on which our proof is based.

Lemma 1. For all f ∈ F , and x, y, z ∈ X, if f ’ x, and f ≻ y, and z ≻ f , then z ≻ x ≻ y.

Proof. We prove x ≻ y, as z ≻ x is similarly shown. Assume x č y, by contradiction.

Having y ≻ x would contradict f ’ x by the transitivity of ≻. Thus, y ∼ x. There are three

possibilities:

Case 1: There exists x′ ∈ X such that f ’ x′ and x ≻ x′. Then y ≻ x′ since y ∼ x. So

f ≻ y, and y ≻ x′ which implies f ≻ x′, a contradiction.

Case 2: There exists x′ ∈ X such that f ’ x′ and x′ ≻ x. Then, f ’ x′, x ∼ y, f ≻ y,

and x′ ≻ x. Applying Axiom 7, one gets f ≻ x, a contradiction.

Case 3: For all x′ ∈ X such that f ’ x′, x′ ∼ x. Applying Axiom 6 to f and y, one gets

f ’ y, a contradiction.

Lemma 2. ’ satisfies certainty independence.

Proof. Let f, g ∈ F , x ∈ X, and α ∈ (0, 1), the following equivalence relations hold:

f ’ g

⇐⇒ f č g and g č f

⇐⇒ αf + (1− α)x č αg + (1− α)x and αg + (1− α)x č αf + (1− α)x

⇐⇒ αf + (1− α)x ’ αg + (1− α)x.

The first and the third ones follow from the definition of ’, and the second from the fact

that ≻ satisfies certainty independence (Axiom 3).

Lemma 3. For all f ∈ F and x, y ∈ X, if f ≻ x and x Á y, then f ≻ y.

Proof. Let f ∈ F and x, y ∈ X such that f ≻ x and x Á y. By contradiction, assume that

f č y, then either y ≻ f or y ’ f . If y ≻ f , then y ≻ x by transitivity, which contradicts the

assumption that x Á y. If y ’ f , it follows from Lemma 1 that y ≻ x; a contradiction.

Lemma 4. For all f, g ∈ F with f(s) Á g(s) for all s ∈ S, and for all x ∈ X, if x ’ f ,

then g č x; and if x ’ g, then x č f .

Proof. Suppose that f(s) Á g(s) for all s ∈ S, and suppose by contradiction that there is

x ∈ X such that x ’ f and g ≻ x.45

45The conclusion that x č f when x ’ g follows easily from the same argument by contradiction.
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As ≻ is non-trivial, there are y and z in X such that y ≻ z. From Axiom 3 and Lemma 2,

αf(s)+ (1−α)z Á αg(s)+ (1−α)z for all s ∈ S and all α ∈ (0, 1). Let fα = αf +(1−α)z,

gα = αg + (1− α)z, and xα = αx+ (1− α)z. Note that fα(s) Á gα(s) for all s ∈ S. Axiom

3 and Lemma 2 imply, for all α ∈ (0, 1),

x ’ f ⇐⇒ xα ’ fα

g ≻ x ⇐⇒ gα ≻ xα.

Besides, Axiom 2 guarantees that for α close enough to 0, y ≻ gα(s) for all s ∈ S. Now,

fix α ∈ (0, 1) such that y ≻ gα(s) for all s ∈ S and define, for all β ∈ (0, 1), fβ ∈ F by

fβ(s) = βfα(s) + (1 − β)y for all s ∈ S. As u(fα(s)) ≥ u(gα(s)) and u(y) > u(gα(s)),

fβ(s) ≻ gα(s) for all s ∈ S. In addition, by Lemma 2, xα ’ fα implies βxα + (1− β)y ’ fβ.

Then, by Axiom 5, gα č βxα + (1− β)y for all β ∈ (0, 1). However, as gα ≻ xα, if β is close

enough to 1, Axiom 2 implies that gα ≻ βxα + (1− β)y, a contradiction.

Lemma 5. For all f ∈ F , the set {x ∈ X : x ’ f} is non-empty.

Proof. By definition of a simple act, for all f ∈ F , there are x∗ and x∗ in X such that

x∗ Á f(s) Á x∗ for all s ∈ S. Since f(s) Á x∗ for all s ∈ S and x∗ ’ x∗, Lemma 4

implies that x∗ č f . One obtains similarly that f č x∗. Consider the sets {α ∈ [0, 1] : f č

αx∗ + (1 − α)x∗} and {α ∈ [0, 1] : αx∗ + (1 − α)x∗ č f} which are non-empty and closed

relative to [0, 1] by the continuity of ≻. Clearly, their union is [0, 1], and the connectedness

of [0, 1] in turn implies that their intersection is non-empty: there is α∗ ∈ [0, 1] such that

α∗x∗ + (1− α∗)x∗ ’ f.

From the original relation ≻, we define two preference relations as follows:

f ≻p g ⇐⇒ f ≻ x and x ’ g for some x ∈ X,

f ≻o g ⇐⇒ f ’ x and x ≻ g for some x ∈ X.

Step 1. ≻p and ≻o are asymmetric and negatively transitive.

We only prove that ≻p has these properties, as the argument for ≻o is similar.

Assume by contradiction f ≻p g and g ≻p f for some f, g ∈ F . That is, there are some

x, y ∈ X such that f ≻ x, x ’ g, g ≻ y, and y ’ f . By Lemma 1, one concludes that

y ≻ x since f ≻ x and y ’ f and x ≻ y as g ≻ y and x ’ g. This is impossible since ≻ is

asymmetric. As a consequence, ≻p is asymmetric.

Now, assume by contradiction that for some f, g, h ∈ F f ̸≻p g, g ̸≻p h, and f ≻p h. By

definition of ≻p, there is x ∈ X such that f ≻ x and x ’ h. Since g ̸≻p h, the following
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holds: f ≻ x ≻ g. Let y ∈ X such that g ’ y. From Lemma 1, x ≻ y, implying f ≻ y. But

then, f ≻p g, which is a contradiction. Therefore, ≻p is negatively transitive.

Step 2. f ≻ g if and only if f ≻p g and f ≻o g.

Let us first prove that for f, g ∈ F such that f ≻ g, one has f ≻p g and f ≻o g,

giving the explicit argument exclusively for f ≻p g, as f ≻o g is proved symmetrically. By

contradiction, assume that f čp g, then for all x ’ g, one has f č x, that is, either f ’ x

or x ≻ f . But if x ≻ f , then x ≻ g by transitivity, which contradicts x ’ g. Thus, for all

x ∈ X, if x ’ g, then x ’ f . By Axiom 6, g ’ f , a contradiction. We have thus proved

f ≻p g.

Suppose now f ≻p g and f ≻o g, and let us show f ≻ g. By definition of ≻p and ≻o,

there exist x ∈ X such that f ≻ x and x ’ g, and y ∈ X such that y ’ f and y ≻ g. Axiom

7 then implies f ≻ g.

Define ∼p by f ∼p g if and only if f čp g and g čp f , for all f, g ∈ F , and define Áp by

f Áp g if and only if either f ≻p g or f ∼p g, for all f, g ∈ F . The relations ∼o and Áo are

similarly defined. It is clear that Áp and Áo are complete and transitive. We say that Áp

(resp. Áo) is continuous if ≻p (resp. ≻o) is continuous, which is equivalent to the closedness

of {α ∈ [0, 1] : αf + (1− α)g Áp h} and {α ∈ [0, 1] : h Áp αf + (1− α)g}.

Step 3. Áp and Áo are continuous and satisfy monotonicity and certainty independence.46

We only provide the proof that Áp is continuous and satisfies monotonicity and certainty

independence, where monotonicity, when allowing for indifference, means that for all f, g ∈ F
such that f(s) Áp g(s) for all s ∈ S, f Áp g, and certainty independence means that for all

f, g ∈ F , all x ∈ X, and all α ∈ (0, 1), f Áp g if and only if αf +(1−α)x Áp αg+(1−α)x.

We first show that Áp is continuous. Let f, g, h ∈ F and x ∈ X; denote Ax the set of

α ∈ [0, 1] such that αf + (1 − α)g ≻ x and x ’ h. Either Ax is empty or it coincides with

{λ ∈ [0, 1] : λf+(1−λ)g ≻ x}. Then Ax is open by Axiom 2. Therefore, {α ∈ [0, 1] : αf+(1−
α)g ≻p h} = ∪x∈XAx is open. Similarly, one can show that {α ∈ [0, 1] : h ≻p αf +(1−α)g}
is open; thus, Áp is continuous.

Next, we prove that Áp satisfies monotonicity. Let f, g ∈ F such that f(s) Áp g(s) for

all s ∈ S, which clearly implies f(s) Á g(s) for all s ∈ S. Suppose g ≻p f , which means that

there exists x ∈ X such that g ≻ x and x ’ f . This is a direct contradiction as, by Lemma

4, for any x′ ∈ X such that x′ ’ f , g č x′. Thus, f Áp g.

46The definition of these properties for a weak order are reminded in the following lines.
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Lastly, we establish that Áp satisfies certainty independence. Let f, g ∈ F , x ∈ X, and

α ∈ (0, 1). We first show that f Áp g implies αf + (1− α)x Áp αg + (1− α)x. Since Áp is

a weak order, f Áp g is equivalent to g čp f , which holds if, and only if, for all y ∈ X such

that g ≻ y, f and y are comparable. Under Axiom 3, it is sufficient to prove that, for all

y ∈ X such that αg + (1− α)x ≻ y, αf + (1− α)x and y are comparable. Let y ∈ X such

that αg + (1− α)x ≻ y and suppose by contradiction αf + (1− α)x ’ y.

Claim: For such y ∈ X, there is z ∈ {z : z ’ f} with u(z) = inf{u(z) : z ’ f} such that

y Á αz + (1− α)x.

We have shown in Step 2 that there exists z ∈ {z ∈ X : z ’ f} such that u(z) = inf{u(z) :
z ’ f}. Since ’ satisfies certainty independence (Lemma 2), αf +(1−α)x ’ αz+(1−α)x.

We claim y Á αz + (1 − α)x. Indeed, if there exists z ∈ X such that z ≻ z, then it

follows from Axiom 3 and Lemma 1 that f ≻ zβ := βz + (1 − β)z for all β ∈ (0, 1). Using

Axiom 3 again yields αf + (1− α)x ≻ αzβ + (1− α)x. It then follows from Lemma 1 that

y ≻ αzβ+(1−α)x for all β ∈ (0, 1). Letting β tend to 1, one concludes, since u is affine, that

y Á αz+(1−α)x. If z Á z for all z ∈ X, then αf(s)+(1−α)x Á αz+(1−α)x for all s ∈ S

(otherwise, Axiom 3 implies z ≻ f(s), which is a contradiction). Since αf + (1 − α)x ’ y,

Lemma 4 implies αz + (1− α)x č y, which is equivalent to y Á αz + (1− α)x.

Since αg + (1− α)x ≻ y and y Á αz + (1− α)x, Lemma 3 implies

αg + (1− α)x ≻ αz + (1− α)x,

which is equivalent to g ≻ z by Axiom 3. Hence, by definition of z, g ≻p f , a contradiction.

Therefore, αf +(1−α)x and y are comparable, which yields αf +(1−α)x Áp αg+(1−α)x.

We now show the converse implication. For α ∈ (0, 1), and any two f, g ∈ F , αf + (1−
α)x Áp αg+(1−α)x if, and only if, for all y ∈ X such that αg+(1−α)x ≻ y, αf +(1−α)x
and y are comparable. Let y ∈ X such that g ≻ y, then one has αg+(1−α)x ≻ αy+(1−α)x
by Axiom 3. Thus, αf + (1−α)x and αy+ (1−α)x are comparable, implying that f and y

are comparable by Axiom 3. Hence, g čp f , which is equivalent to f Áp g. We have proved

that Áp satisfies certainty independence.

Step 4. An agent with preferences Áp on F is averse to ambiguity, i.e., for all f, g ∈ F ,

f ∼p g implies αf + (1 − α)g Áp f . An agent with preferences Áo on F loves ambiguity,

i.e., for all f, g ∈ F , f ∼p g implies f Áo αf + (1− α)g.

We only prove that Áp displays ambiguity aversion. Let f, g ∈ F such that f ∼p g,

i.e., f čp g and g čp f . In other words, for all x ∈ X with f ≻ x, x is comparable with

g, and for all x ∈ X with g ≻ x, x is comparable with f . Let x ∈ X such that f ≻ x.
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If x ≻ g, then f ≻ g, and then, by Step 2, f ≻p g, which is a contradiction; thus, one

must have g ≻ x. This implies {x ∈ X : f ≻ x} ⊆ {x ∈ X : g ≻ x}. Analogously,

{x ∈ X : g ≻ x} ⊆ {x ∈ X : f ≻ x}; therefore, {x ∈ X : f ≻ x} = {x ∈ X : g ≻ x}.
Let α ∈ (0, 1), we claim that αf +(1−α)g Áp f . Since Áp is a weak order, it is sufficient

to prove f čp αf+(1−α)g, which holds if, for all x ∈ X such that f ≻ x, αf+(1−α)g ≻ x.

Yet, we have just proved that f ≻ x if and only if g ≻ x. Axiom 4 then directly entails

αf + (1− α)g ≻ x; which concludes.

Conclusion. It is well-known since Gilboa and Schmeidler (1989) that a weak or-

der defined on F satisfying the properties stated in Step 3 can be represented by f 7→
minp∈C

∫
up(f)dp if it displays ambiguity aversion, such as Áp, and by f 7→ maxp∈D

∫
uo(f)dp

if it displays love for ambiguity, such as Áo, where C and D are unique non-empty convex

compact subsets of ∆, up and uo are two affine functions on X, unique up to positive affine

transformation. Clearly, for all x, y ∈ X, x Áp y if and only if x Á y, and x Áo y if and only

if x Á y. Thus, up and uo are positive affine transformations of u, and one may assume that

up = uo = u. Finally, it remains to prove that C ∩D ̸= ∅.

Claim: C and D are non-disjoint if, and only if, for all f ∈ F , minp∈C
∫
u(f)dp ≤

maxp∈D
∫
u(f)dp.

We only prove the if part, the other direction being trivial. We proceed by contraposition.

Suppose that C ∩ D = ∅. By the separating hyperplane theorem, there exists a bounded

measurable function φ : S → R such that minp∈C
∫
φdp > maxp∈D

∫
φdp. Yet, there exists

a sequence of simple functions {φn} that converges (in supnorm topology) to φ. Since

both φ̃ 7→ minp∈C
∫
φ̃dp and φ̃ 7→ maxp∈D

∫
φ̃dp are continuous, there is n ∈ N such that

minp∈C
∫
φndp > maxp∈D

∫
φndp. As aφn + b also satisfies this last inequality for all a > 0

and b ∈ R, one can choose a > 0 and b ∈ R such that aφn(s)+ b ∈ u(X) for all s ∈ S, which

implies φn = u(f) for some f ∈ F :

min
p∈C

∫
u(f)dp > max

p∈D

∫
u(f)dp.

As a consequence, the fact that, for all f ∈ F , minp∈C
∫
u(f)dp ≤ maxp∈D

∫
u(f)dp, implies

C ∩D ̸= ∅.
Based on this claim, it remains to prove that minp∈C

∫
u(f)dp ≤ maxp∈D

∫
u(f)dp for all

f ∈ F in order to conclude that C and D are not disjoint.

Let us show that the inequality minp∈C
∫
u(f)dp ≤ maxp∈D

∫
u(f)dp holds for all f ∈ F

if and only if, for all x ∈ X, for all f ∈ F , f ≻p x implies f ≻o x.

Suppose that for all x ∈ X, for all f ∈ F , f ≻p x implies f ≻o x. Suppose, by
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contradiction, that there is f ∈ F such that minp∈C
∫
u(f)dp > maxp∈D

∫
u(f)dp. Clearly,

one has u(x∗) ≤ minp∈C
∫
u(f)dp ≤ u(x∗), where x∗ and x∗ are defined as in the proof of

Lemma 5. Then, since u(X) is convex, minp∈C
∫
u(f)dp belongs to u(X). Similarly, one can

deduce that maxp∈D
∫
u(f)dp lies in u(X). Then, the convexity of u(X) implies that there

exists x ∈ X such that

min
p∈C

∫
u(f)dp > u(x) > max

p∈D

∫
u(f)dp,

which is a contradiction as it implies, as minp∈C
∫
u(x)dp = maxp∈D

∫
u(x)dp = u(x), f ≻p x

and x ≻o f . The other direction of the equivalence is trivial.

It remains to show that, indeed, f ≻p x implies ≻o x, for all x ∈ X, and all f ∈ F . Yet,

f ≻p x implies f ≻ x. Indeed, f ≻p x if and only if there exists y ∈ X such that f ≻ y and

y ’ x; then Lemma 3 implies f ≻ x. By Step 2, we conclude that f ≻o x.

We have thus proved that minp∈C
∫
u(f)dp ≤ maxp∈D

∫
u(f)dp for all f ∈ F , and, thus,

that C and D are non-disjoint.

If part. Assume that ≻ admits a hope-and-prepare representation. One can readily check

that Axioms 1 to 5 are satisfied.

For all f ∈ F , denote pf ∈ argmaxp∈D
∫
u(f)dp and p

f
∈ argminp∈C

∫
u(f)dp. Define

also the constant acts f =
∫
fdpf and f =

∫
fdp

f
. Clearly, f ’ f and f ’ f ; moreover,


f ≻ x ⇐⇒ u(f) > u(x),

x ≻ f ⇐⇒ u(x) > u(f),

f ’ x ⇐⇒ u(f) ≥ u(x) ≥ u(f)

. (2)

We prove that Axiom 6 is verified by contradiction. Consider f, g ∈ F such that for all

x ∈ X, f ’ x implies g ’ x. If f ≻ g, then u(f) > u(g). However, by assumption, g ’ f ,

which implies u(g) ≥ u(f) ≥ u(g), a contradiction. The same argument applies to prove

that g ≻ f cannot hold. Therefore, f ’ g.

Axiom 7 easily obtains from the comparisons in (2). Indeed, let f, g ∈ F and x, y ∈ X

such that f ’ x, g ’ y, x ≻ g, and f ≻ y. Using (2), one gets
u(f) ≥ u(x) ≥ u(f),

u(g) ≥ u(y) ≥ u(g),

u(x) > u(g), u(f) > u(y)

. (3)
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Then u(f) ≥ u(x) > u(g) and u(f) > u(y) ≥ u(g), that is f ≻ g, by definition of a

hope-and-prepare preference.

D.2 Proof of Theorem 2

By assumption,

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

,

where u is an affine function defined on X, unique up to affine transformation, C and D are

two unique compact and convex subsets of ∆ with C ∩D ̸= ∅. It remains to prove that ≻
admitting such a representation satisfies Axiom 8 and 9 if and only if C = D. We show in

a very similar way to Echenique et al. (2022) that it satisfies Axiom 8 if and only if D ⊆ C

—the other inclusion being equivalent to Axiom 9 is shown in a symmetric way.

Only-if part. Suppose by contraposition that D Ę C: there is some p∗ ∈ D such that p∗ /∈
C. Then, by the separating hyperplane theorem and the argument given in the Conclusion

step of the proof of Theorem 1, there is an act ψ and k ∈ R such that

min
p∈C

∫
u(ψ)dp > k >

∫
u(ψ)dp∗. (4)

By scaling ψ and k appropriately, as u is affine, one can find f, h ∈ F and x ∈ X such that

u(f) = 1
2
u(ψ), u(h) = −u(ψ) and u(x) = 2k.47 Let g = 1

2
h+ 1

2
x:

u
´1

2
f +

1

2
g

¯

=
1

4
u(ψ) +

1

2

ˆ

−1

2
u(ψ) + k

˙

=
k

2
,

that is, f and g are complementary, and 1
2
f(s) + 1

2
g(s) ∼ y for some y ∈ X such that

u(y) = k
2
, for all s ∈ S. Since u(f) = 1

2
u(ψ), Equation (4) implies

min
p∈C

∫
u(f)dp =

1

2
min
p∈C

∫
u(ψ)dp >

k

2
= u(y).

In addition, as D ∩ C ̸= ∅, maxp∈D
∫
u(f)dp ≥ minp∈C

∫
u(f)dp > u(y). As a consequence,

f ≻ y.

47We abuse notation in a standard way when writing u(f) = t, for t ∈ R, to actually denote u(f(s)) = t
for all s ∈ S.
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Futhermore, u(g) = u
`

1
2
h+ 1

2
x

˘

= −1
2
u(ψ) + k. Since p∗ ∈ D, Equation (4) implies

max
p∈D

∫
u(g)dp ≥

∫
u(g)dp∗ = −1

2

∫
u(ψ)dp∗ + k > −k

2
+ k =

k

2
= u(y),

from which y č g. One thus has 1
2
f(s) + 1

2
g(s) ∼ y for all s ∈ S, f ≻ y, and y č g, which is

a violation of Axiom 8.

If part. Suppose that D ⊆ C. Consider two complementary acts f, g ∈ F such that
1
2
f(s) + 1

2
g(s) ∼ x for some x ∈ X, for all s ∈ S, or, 1

2
u(f) + 1

2
u(g) = k, with u(x) = k.

Assume f ≻ x, which is is equivalent tominp∈C
∫
u(f)dp > k

maxp∈D
∫
u(f)dp > k

⇐⇒

1
2
minp∈C

∫
u(f)− u(g)dp > 0

1
2
maxp∈D

∫
u(f)− u(g)dp > 0

⇐⇒

1
2
maxp∈C

∫
u(g)− u(f)dp < 0

1
2
minp∈D

∫
u(g)− u(f)dp < 0

.

Since D ⊆ C, the last inequalities yield1
2
maxp∈D

∫
u(g)− u(f)dp < 0

1
2
minp∈C

∫
u(g)− u(f)dp < 0

.

Plugging u(f) = 2k − u(g), one obtains2maxp∈D
∫
u(g)− kdp < 0

2minp∈C
∫
u(g)− kdp < 0

⇐⇒

maxp∈D
∫
u(g)dp < k

minp∈C
∫
u(g)dp < k

.

As k = u(x), this means x ≻ g. Therefore, ≻ satisfies Axiom 8.

D.3 Proof of Proposition 1

i) Let ≻H be a hope-and-prepare preference with unique representation (u,CH , DH), and let

≻B be Bewley preference with unique representation (u,CB).

First, suppose that CH ∪DH ⊆ CB. If f ≻B g, then for all p ∈ CH ∪DH ,∫
u(f)dp >

∫
u(g)dp,
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which implies, as CH and DH are not disjoint,minp∈CH

∫
u(f)dp > minp∈CH

∫
u(g)dp,

maxp∈DH

∫
u(f)dp > maxp∈DH

∫
u(g)dp.

Therefore, f ≻H g. Thus, ≻B is more conservative than ≻H .

Conversely, suppose≻B is more conservative than≻H and suppose, by contradiction, that

there exists p∗ ∈ CH \ CB. By the separation argument we already used in the Conclusion

step of the proof of Theorem 1, there are f ∈ F and x ∈ X such that∫
u(f)dp∗ > u(x) > max

p∈CB

∫
u(f)dp.

It follows that x ≻B f but x čH f , a contradiction. Similarly, suppose there exists

p∗ ∈ DH \ CB. Then there are f ∈ F and x ∈ X such that

min
p∈CB

∫
u(f)dp > u(x) >

∫
u(f)dp∗.

In this case, we have f ≻B x but f čH x, an other contradiction. Therefore, CH∪DH ⊆ CB.

ii) Let ≻H be a hope-and-prepare preference with unique representation (u,CH , DH),

and ≻T be a twofold multiprior preference with unique representation (u,CT , DT ).

First, suppose that CH ⊆ CT and DH ⊆ DT . Since DT ∩ CT ̸= ∅ and DH ∩ CH ̸= ∅,
CH ∩DT ̸= ∅ and DH ∩ CT ̸= ∅. If f ≻T g, then

min
p∈CT

∫
u(f)dp > max

p∈DT

∫
u(g)dp,

which implies

min
p∈CH

∫
u(f)dp ≥ min

p∈CT

∫
u(f)dp > max

p∈DT

∫
u(g)dp ≥ max

p∈DH

∫
u(g)dp,

max
p∈DH

∫
u(f)dp ≥ min

p∈CT

∫
u(f)dp > max

p∈DT

∫
u(g)dp ≥ max

p∈DH

∫
u(g)dp.

Since DH ∩ CH ̸= ∅, one gets

max
p∈DH

∫
u(f)dp ≥ min

p∈CH

∫
u(f)dp > max

p∈DH

∫
u(g)dp ≥ min

p∈CH

∫
u(g)dp.

Therefore, f ≻H g. Thus, ≻T is more conservative than ≻H .
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Conversely, suppose ≻T is more conservative than ≻H and suppose, by contradiction,

that there exists p∗ ∈ CH \ CT . There are f ∈ F and x ∈ X such that

min
p∈CT

∫
u(f)dp > u(x) >

∫
u(f)dp∗,

from which it follows that f ≻T x but f čH x, a contradiction. To prove that DH ⊆ DT ,

suppose there exists p∗ ∈ DH \DT . There are f ∈ F and x ∈ X such that∫
u(f)dp∗ > u(x) > max

p∈DT

∫
u(f)dp.

In this case, x ≻T f but x čH f , an other contradiction.

D.4 Proof of Proposition 2

Clearly, for each i ∈ {1, 2}, and all x ∈ X, f ≻i x if and only if f ≻ip x, where ≻ip is the

pessimistic relation defined, as in the proof of Theorem 1, by f ≻ip g if and only if f ≻i y

and y ’i g for some y ∈ X. Thus, ≻1 is more ambiguity averse than ≻2 if and only if ≻1p

is more ambiguity averse than ≻2p. When proving Theorem 1, we have shown that ≻ip is

represented by a maxmin expected utility functional; therefore, ≻1p is more ambiguity averse

than ≻2p if and only if C2 ⊆ C1.

Similarly, for each i ∈ {1, 2}, and all x ∈ X, x ≻i f if and only if x ≻io f , where ≻io

is the optimistic relation defined, as in the proof of Theorem 1, by f ≻io g if and only if

f ’i y and y ≻i g for some y ∈ X. As we have proved that ≻io admits a maxmax expected

utility representation, one obtains that ≻1 is more ambiguity loving than ≻2 if and only if

D2 ⊆ D1.

D.5 Proof of Theorem 3

We will only prove that (i) implies (ii), the inverse implication being routine.

Lemma 6. A weak order relation ≻ on F satisfies Axioms 2, 3 and 5 if and only if there

exists a monotonic, constant-linear functional I : B0(Σ) → R and a non-constant affine

function u : X → R such that, for all f, g ∈ F ,

f ≻ g ⇐⇒ I(u(f)) > I(u(g)).

Moreover, I is unique and u is unique up to positive affine transformation.
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Proof. As before, define Á by f Á g if and only if g č f for all f, g ∈ F . Clearly, Á

is complete and transitive, and ’ is an equivalence relation (see Theorem 2.1 in Fishburn

(1970)). The weak order Á is continuous if, for all f, g, h ∈ F , {α ∈ [0, 1] : αf+(1−α)g Á h}
and {α ∈ [0, 1] : h Á αf + (1 − α)g} are closed. Clearly, Á is continuous and non-trivial.

It is monotone if and only if, for all f, g ∈ F , if f(s) Á g(s) for all s ∈ S, then f Á g.

Since Lemma 4 holds, in particular, for a weak order of which the asymmetric part satisfies

Axioms 2, 3 and 5, and since ’ is an equivalence relation, Á is monotone.

Now, we check that that Á satisfies certainty independence: for all f, g ∈ F and x ∈ X,

f Á g ⇐⇒ g č f

⇐⇒ αg + (1− α)x č αf + (1− α)x

⇐⇒ αf + (1− α)x Á αg + (1− α)x.

As a consequence, by Lemma 1 in Ghirardato et al. (2004),48 there exists a monotonic,

constant-linear functional I : B0(Σ) → R and a non-constant affine function u : X → R such

that, for all f, g ∈ F ,

f Á g ⇐⇒ I(u(f)) ≥ I(u(g)).

Moreover, I is unique and u is unique up to positive affine transformation.

Lemma 7. Suppose that I, I ′, I ′′ : B0(Σ) → R are monotonic and constant-linear with

I ′ ≤ I ′′. Then the following statements are equivalent:

(i) For all ϕ, φ ∈ B0(Σ), if I
′(ϕ) > I ′(φ) and I ′′(ϕ) > I ′′(φ), then I(ϕ) > I(φ).

(ii) There exists α ∈ [0, 1] such that, for all φ ∈ B0(Σ), I(φ) = αI ′(φ) + (1− α)I ′′(φ).

Proof. The following proof closely follows the proof of Lemma A.3 of Frick et al. (2022). We

only prove that (i) implies (ii); the other implication is easily checked. By (i), there is an

increasing functionW : {(I ′(φ), I ′′(φ)) : φ ∈ B0(Σ)} → R such thatW (I ′(φ), I ′′(φ)) = I(φ).

Let φ ∈ B0(Σ) be such that I ′(φ) = I ′′(φ) = k. We will show that I(φ) = k. Since I ′

and I ′′ are monotonic and constant-linear, k+ ε = I ′(k+ ε) > I ′(φ) > I ′(k− ε) = k− ε and

k + ε = I ′′(k + ε) > I ′′(φ) > I ′′(k − ε) = k − ε. Thus, by (i), k + ε = I(k + ε) > I(φ) >

I(k − ε) = k − ε. Let ε converge to 0, then I(φ) = k. Thus, I(φ) = k, which implies that

I(φ) = αI ′(φ) + (1− α)I ′′(φ) for all α ∈ R.
48Axiom 2 implies the “Archimedean axiom” in Ghirardato et al. (2004).
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Now, consider φ ∈ B0(Σ) such that I ′(φ) < I ′′(φ). There exists α(φ) ∈ R such that

I(φ) = α(φ)I ′(φ) + (1− α(φ))I ′′(φ). By a simple computation, one obtains

α(φ) =
I(φ)− I ′′(φ)

I ′(φ)− I ′′(φ)
= −I(ϕ) = −W (I ′(ϕ), I ′′(ϕ)),

where ϕ = φ−I′′(φ)
I′′(φ)−I′(φ)

. Clearly, I ′(ϕ) = −1 and I ′′(φ) = 0. Thus, α(φ) = −W (−1, 0), which

is independent of φ. Let α = −W (−1, 0). Then, I(φ) = αI ′(φ) + (1 − α)I ′′(φ) for all

φ ∈ B0(Σ).

We now prove that α ∈ [0, 1]. By contradiction, assume that α < 0. For any φ ∈ B0(Σ)

such that I ′(φ) < I ′′(φ), we have I(φ) > I ′′(φ). There exists ε > 0 such that I(φ) > I ′′(φ)+ε.

Moreover, I ′′(φ) + ε = I ′(I ′′(φ) + ε) > I ′(φ) and I ′′(φ) + ε = I ′′(I ′′(φ) + ε) > I ′′(φ). By (i),

I ′′(φ) + ε = I(I ′′(φ) + ε) > I(φ), which is a contradiction. Thus, α ≥ 0. One can similarly

show that α ≤ 1.

Assume that ≻ is a hope-and-prepare preference and ≻∗ is an invariant biseparable

extension of ≻. Let u : X → R be a non-constant affine function, and let C and D be two

compact convex subsets of ∆ with C ∩D ̸= ∅ such that

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

.

From the uniqueness result of Theorem 1, u is unique up to positive affine transformation,

and C and D are unique.

It follows from Lemma 6 that there exist a monotonic, constant-linear functional I :

B0(Σ) → R and a non-constant affine function u′ : X → R such that, for all f, g ∈ F ,

f ≻∗ g ⇐⇒ I(u′(f)) > I(u′(g)).

Moreover, I is unique and u′ is unique up to positive affine transformation.

It trivially follows from the extension property that, for all x, y ∈ X, u(x) = u(y) if and

only if u′(x) = u′(y), which implies that u is a positive affine transformation of u′. Thus,

one can assume without loss of generality u = u′.

Define I ′ : B0(Σ) → R and I ′′ : B0(Σ) → R by I ′(φ) = minp∈C
∫
φdp and I ′′(φ) =

maxp∈D
∫
φdp for all φ ∈ B0(Σ). Clearly, I

′ and I ′′ are monotonic, constant-linear function-

als; and since C ∩D ̸= ∅, I ′′ ≥ I ′.

Now, let ϕ, φ ∈ B0(Σ) such that I ′(ϕ) > I ′(φ) and I ′′(ϕ) > I ′′(φ). We denote by

B0(Σ, u(X)) the set of all functions in B0(Σ) that take values in u(X). Since u(X) is an
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interval in R, it is easy to check that there are a > 0 and b ∈ R such that ϕ = aϕ′ + b

and φ = aφ′ + b, where ϕ′, φ′ ∈ B0(Σ, u(X)). And, by definition of u(X) and F , there are

f, g ∈ F such that ϕ′ = u(f) and φ′ = u(g). The following equivalences hold:

I ′(ϕ) > I ′(φ)

⇐⇒ min
p∈C

∫
aϕ′ + bdp > min

p∈C

∫
aφ′ + bdp

⇐⇒ min
p∈C

∫
u(f)dp > min

p∈C

∫
u(g)dp.

Similarly, I ′′(ϕ) > I ′′(φ) is equivalent to maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp. Thus, f ≻ g.

Since ≻∗ is an extension of ≻, f ≻∗ g, which is equivalent to I(u(f)) > I(u(g)). Thus,

I(ϕ′) > I(φ′). Because I is constant-linear, one obtains I(ϕ) > I(φ).

It then follows from Lemma 7 that there exists α ∈ [0, 1] such that, for all φ ∈ B0(Σ),

I(φ) = αI ′(φ) + (1− α)I ′′(φ). In particular, for all f ∈ F ,

I(u(f)) = αmin
p∈C

∫
u(f)dp+ (1− α)max

p∈D

∫
u(f)dp.

Finally, if≻ is incomplete, there exists f ∈ F such that minp∈C
∫
u(f)dp < maxp∈D

∫
u(f)dp.

Thus, for all α′ ̸= α,

αmin
p∈C

∫
u(f)dp+ (1− α)max

p∈D

∫
u(f)dp ̸= α′min

p∈C

∫
u(f)dp+ (1− α′)max

p∈D

∫
u(f)dp.

This implies that α is uniquely defined since I is uniquely defined.

D.6 Proof of Proposition 3

Let C = co p
⋃n

i=1Ciq. Clearly, C is a compact convex set. Let ≻ be a Bewley preference

relation on F , with representation (u,C).

First, assume that≻0 is a hope-and-prepare preference with unique representation (u,C0, C0).

i) Suppose that Pareto holds. Clearly, for all f, g ∈ F , f ≻ g implies f ≻0 g. Thus,

by definition, ≻ is more conservative than the social preference ≻0, and, by Proposition 1,

C0 ⊆ C. The converse implication is immediate.

ii) Assume that caution for incomparability holds. Suppose, by contradiction, that there

is p∗ ∈ C \ C0. Then, there are f ∈ F and x ∈ X such that∫
u(f)dp∗ > u(x) > max

p∈C0

∫
u(f)dp.
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By definition of C, there exist (pi)i∈N ∈
Ś

i∈N Ci and (λi)i∈N ∈ Rn
+ such that

∑n
i=1 λi = 1 and

p∗ =
∑n

i=1 λipi. Thus, there exists j ∈ N such that
∫
u(f)dpj > u(x) > maxp∈C0

∫
u(f)dp,

which implies maxp∈Cj

∫
u(f)dp > u(x) > maxp∈C0

∫
u(f)dp. As x ≻0 f —this is the right

hand side of the inequality above— caution for incomparability implies that either x ≻j f

or f ≻j x. Since maxp∈Cj

∫
u(f)dp > u(x), one concludes that f ≻j x, which implies

minp∈Cj

∫
u(f)dp > u(x). Let x̄ ∈ X such that f ’j x̄:

u(x̄) ≥ min
p∈Cj

∫
u(f)dp > u(x) > max

p∈C0

∫
u(f)dp,

which implies x̄ ≻0 f . This is in contradiction with caution for incomparability. Therefore,

C ⊆ C0.

We now prove the converse implication. Assume C ⊆ C0. Let f ∈ F and x ∈ X such

that f ’i x for some i ∈ N . This implies

max
p∈Ci

∫
u(f)dp ≥ u(x) ≥ min

p∈Ci

∫
u(f)dp.

Since Ci ⊆ C, Ci ⊆ C0. Hence,

max
p∈C0

∫
u(f)dp ≥ max

p∈Ci

∫
u(f)dp ≥ u(x) ≥ min

p∈Ci

∫
u(f)dp ≥ min

p∈C0

∫
u(f)dp,

that is, f ’0 x.

Now, assume that ≻0 is a Bewley preference with unique representation (u,C0). State-

ment i) is an immediate consequence of Theorem 2 in Danan et al. (2016). Statement ii) in

this case is proved from the same argument as statement ii) in the previous case.

The if part is immediate. Suppose that caution for incomparability holds. Suppose, by

contradiction, that there exits p∗ ∈ C \ C0. There are f ∈ F and x ∈ X such that∫
u(f)dp∗ > u(x) > max

p∈C0

∫
u(f)dp.

Then, there is j ∈ N such that

max
p∈Cj

∫
u(f)dp > u(x) > max

p∈C0

∫
u(f)dp.

The right hand side of this inequality implies that x ≻0 f . From caution for incomparability,

either x ≻j f or f ≻j x. By the left hand side of the inequality above, f ≻j x. Let x̄ ∈ X

such that f ’j x̄. By caution for incomparability, f ’0 x̄. However, it also holds that
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u(x̄) ≥ minp∈Cj

∫
u(f)dp > u(x) > maxp∈C0

∫
u(f)dp, which implies x̄ ≻0 f ; a contradiction.

Therefore, C ⊆ C0.
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