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Abstract

Following recent advancements in Bayesian statistics in the field of decision under

risk, we try to provide evidence that all heterogeneity in risk attitudes is driven by the

heterogeneity in probability weighting. Our results indicate that participants in a high-

stake experiment exhibit a homogeneous cognitive treatment of wealth but a heterogeneous

treatment of probabilities. More specifically, most of the individual heterogeneity in risk

attitudes seems to result from differences in the elevation of the probability weighting

function. As an alternative to existing risk-preference elicitation procedures, we propose

a targeted heterogeneity approach wherein only some elements in the models are estimated

at an individual level. We argue that measurement procedures applied entirely at the

subject level could mistake pure noise for heterogeneity in the distribution of some model

parameters. This paper also proposes several methodological innovations to demonstrate

its results, such as the use of both parametric and non-parametric methods for estimating

risk preferences.

Keywords: Risk Preferences, High-Stake Experiment, Probability Weighting, Bayesian Statistics.
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1 Introduction

Since its origin, the elicitation of risk preferences has been a key component in behavioral

economics. Up until the mid-1990s, most empirical studies focused on the ability of dominant

models to predict some paradoxes or anomalies (e.g., Kahneman and Tversky, 1979). However,

around the early 2000s, the focus changed to the elicitation and the test of the models on their

structural or functional forms.1 One of the main findings of this literature, and probably

also one of the most robust, is that individuals considerably differ in their risk attitudes.

The measurement of heterogeneity is straightforward, and it is typically assumed that all the

decision model parameters of each subject are simply different. However, as pointed out for

instance by Wilcox (2008), decisions under risk have a strong stochastic component, and the set

of individual observations in experimental data is generally too small to make the estimation

of risk preferences precise or reliable. Thus, models are prone to overfitting and generate what

we could call spurious heterogeneity or heterogeneity in the estimates caused only by noise.2

While there exists a large literature measuring heterogeneity in risk preferences through

structural models, to our best knowledge, no study tried to explicitly test which features in

the models are essential to capture heterogeneity and which ones could be seen as negligible.

Moreover, we believe a systematic understanding of this issue could help to separate pure

noise from genuine differences in the decision models of subjects. Using a traditional Rank-

Dependent Utility (RDU) model and following a Hierarchical Bayesian Estimation (HBE) approach,

we provide evidence that all heterogeneity in risk behavior can be attributed to the heterogeneity

in the subjects’ Probability Weighting Function (PWF). When we assume a unique utility function

among individuals, the predictive power of the RDU model remains identical, even for stakes

that are relatively high according to experimental economics standards. Conversely, assuming

a universal weighting probability function sharply reduces the predictive accuracy of the same

model. According to our results, decision-makers (DM) could be considered homogeneous in

their cognitive treatment of wealth but heterogeneous in their treatment of probabilities. Thus,

1Prominent studies include Hey and Orme (1994), Camerer and Ho (1994), Stott, (2006), Harrison and Rutström

(2007), and Post et al., (2008). At least two reasons explain this evolution in the literature. First, decision models

have become numerous and flexible enough to rationalize many regularities, and this criterion has tended to be

less and less discriminant. For instance, most non-expected utility theories proposed since Kahneman and Tversky

(1979) explain the Allais paradox. Meanwhile, improvement in the calculation capacity has made model estimation

and evaluation easier during the last two decades.
2See Nilsson et al. (2011), who demonstrate that regularization methods, by penalizing parameters far from the

median estimates of the population, generally give better predictive performances than traditional approaches.
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we reconsider the standard elicitation of risk preferences made at an individual level, and

we propose the notion of targeted heterogeneity, where heterogeneity is driven only by some

elements of the models.

This result seems consistent with the literature, and previous papers have already demonstrated

that the parameters associated with the utility function generally have a low variance in the

general population. For instance, Wakker (2010) states "In general, probability weighting is

a less stable component than outcome utility." This result can also be found, for instance, in

Balcombe and Fraser (2015, p.184). However, we believe that the difference between those

results and our approach is not trivial, as a low variance of the utility parameters does not

logically imply that this one is less important in shaping heterogeneous risk attitudes, as small

changes in some decision parameters can generate a considerable heterogeneity in decisions.

Moreover, as parameters have antagonistic roles in decision-making (e.g., both the utility

function and PWF can generate risk aversion), it seems impossible to know how well a feature

can reproduce the heterogeneity observed in the data without keeping the other elements in

the model constant.

To demonstrate our results, we introduce two more instrumental contributions. First,

we investigate this question through both a classical parametric approach and a new non-

parametric approach. Some well-known non-parametric methods have been proposed, such

as in Hey and Orme (1994) and Wakker and Deneffe (1996). However these two approaches can

be applied only to specific datasets. In contrast, we show that our method is flexible and can

be applied to more general contexts with reliable results. Second, an additional contribution of

this paper is to introduce a relatively new way of testing the predictive power of models. This

procedure, inspired by the standard practices of machine learning and data sciences, enables

us to discuss models’ performance more qualitatively and not only through the statistical

significance of a few tests. As we will see, this design is especially helpful in interpreting

the results of a model competition study.

This paper proceeds as follows. First, we describe the different streams of literature that

this paper brings together: the notion of heterogeneity in risk preferences, the non-parametric

measurement of risk preferences, and the use of Bayesian statistics in decision sciences (Section

2). Then, we detail the methodology used in this study, more specifically, the elicitation of the

risk preferences (Section 3) and the measurement of the predictive power (Section 4). We finally

4



describe our results (Section 5) and, subsequently, the possible implications of this paper for

further research (Section 6).

2 Background literature

2.1 Heterogeneity in risk preferences

The existence of substantial heterogeneity in risk attitudes is a well-established result in decision

sciences. This point has already been underlined by early studies on the elicitation of risk

preferences (e.g., Hey and Orme, 1994, Holt and Laury, 2002). Harrison and Rutström (2008)

conclude their seminal survey on risk preference elicitation by noticing the "considerable individual

heterogeneity in risk attitudes [observed] in the laboratory." Moreover, the results of experiments

implemented in large-scale surveys representative of the population generally confirm the

substantial heterogeneity found in the laboratory (e.g., von Gaudecker et al., 2011).

However, it is worth noting that the very notion of heterogeneity remains quite polysemic

in this field. Moffatt (2020), for instance, differentiates the concepts of continuous heterogeneity

and discrete heterogeneity, a typology also presented by Harrison and Rutström (2008) under the

terms heterogeneity in theories and heterogeneous theories. Continuous heterogeneity corresponds

to a situation where all the subjects share the same model but with different parameters.

Discrete heterogeneity is, in some sense, more radical. In the case of discrete heterogeneity,

subjects differ not only in their individual parameters, but also in the model they use. For

instance, Harrison and Rutström (2009) famously elicit a mixture model where some individuals

are supposed to follow an EU model and the others, the Prospect Theory.

Despite the fact that individuals differ in their risk attitudes, we have reasons to believe

that heterogeneity in risk preferences has been overstated in previous studies. As we show

in the next section, shrinking individual parameters toward their median values through a

hierarchical approach tends to significantly improve the predictive power of decision models

and the reliability of their estimates (e.g., Nilsson et al., 2011). In this paper, we push the

analysis further, and we discuss the possibility that only one aspect of decision models could

be driving the entire heterogeneity of the whole population. Therefore, we introduce the notion

of targeted heterogeneity, a special case of continuous heterogeneity where only some aspects of the

decision models are estimated at the individual level. In terms of complexity, this approach

constitutes an intermediate possibility between the restrictive representative individual hypothesis
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and the assumption that each agent has her own model.

2.2 Non-parametric measurement of risk preferences

In this study, we used both a non-parametric and a parametric approach. In the elicitation of

risk preferences, each approach has limitations that, in fact, complement the other. On the one

hand, the main limitation of the parametric elicitation method is its lack of flexibility, which

could lead to deceptive results if the functional forms are misspecified. On the other hand, the

non-parametric approach may be sometimes prone to overfitting. Therefore, we suggest that a

two-fold approach is especially relevant, one method constituting the most natural robustness

check of the other.

To the best of our knowledge, there currently exist only two methods to elicit risk preferences

without parametric assumptions: Hey and Orme’s (1994) approach (HO) and Wakker and

Deneffe’s (1996) approach.

The Wakker and Deneffe’s (1996) procedure, or Trade-off method, is based on successive

adaptive decisions that determine equally spaced outcomes in terms of utility units, or utils,

and consequently, the shape of the utility function. This technique has generated a considerable

literature and has been successfully extended to such functions as the Probability Weighting

Function (Abdellaoui, 2000; Bleichordt and Pinto, 2000), the Prospect Theory’s value function

(Abdellaoui et al., 2007) and the Regret function (Bleichrodt et al., 2010). Nevertheless, since

this method relies on an adaptive experimental design, the choices proposed to the subjects

depend on their previous answers, and this method cannot be applied to most datasets with

risky decisions. This technique also suffers from several drawbacks; the procedure is generally

not incentive-compatible (Harrison and Rutström, 2008), and its adaptive component can lead

to error propagation issues (Wakker and Deneffe, 1996, p.1148; Blavatskyy, 2006; Richard and

Baudin, 2020).

A possible alternative to the Trade-off method is the HO approach. The HO strategy

consists in treating different levels in the functions to elicit, such as the utility function, as

parameters to estimate. For example, in the EU model, one can maximize the likelihood

function with respect to the utility levels associated with each outcome in the database (e.g.,

the utility of 0, 10, or 100 dollars, euros, or experimental units). An apparent limitation of this

technique is that it becomes unrealistic when the number of levels in the elicited functions is

large. This is why the authors themselves apply a non-parametric analysis to the EU model
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but rely on parametric forms to estimate an RDU model (see below), that gives less degrees of

freedom. Otherwise, without parametric specification, the estimates given by the maximum

likelihood could be misleading: in that case, the likelihood function is generally complex,

and the solutions found by optimization algorithms are sensitive to initial values. Thus, like

the Trade-off method, the HO approach can only be applied to databases that come from

experiments especially designed to use this method, which generally have a reduced number

of possible outcomes.3 Because of this, and while this technique is detailed in the seminal

literature reviews on risk preferences (Harrison and Rutström, 2008; Moffatt, 2020), it has been

little used since its introduction. Some exceptions include Gonzalez and Wu (1999), Hey et

al. (2010), Kothiyal et al. (2014), and the multiple reconsiderations of the original HO dataset

made, for instance, by Wilcox (2011) or Blavatskyy (2011).

In this paper, we return to the HO idea of treating different levels of the utility function as

parameters, and we demonstrate that this method can actually be suitable to a large number

of different outcomes if some elements from Bayesian statistics are added.

2.3 Bayesian statistics and decision sciences

The key aspect of Bayesian statistics is to treat the elicited parameters as random variables. As a

result, the estimation of the parameters does not correspond to a precise value but to a credible

distribution—or posterior distribution—given the observed data. By estimating a posterior

distribution rather than precise values, some computational issues posed by the maximization

algorithms in the non-parametric context can be avoided.

The posterior distribution of the parameters depends both on a prior distribution (generally

vague) and on the choices made by the subjects. Then, the posterior distribution is provided by

a Bayesian updating, such that the density of the posterior distribution in the case of a discrete

predicted variable is

fpost.(θ|x) ∝ P(x|θ) fprior(θ), (1)

where θ is the vector of parameters, x is the set of observations, fprior(θ) is the density of the

prior distribution, and fpost.(θ|x) is the density of the posterior distribution. P(x|θ) corresponds

to the likelihood, namely, the probability to observe x given the parameters θ.4

3For instance, HO consider only four outcomes: £0, £10, £20, and £30.
4In Equation 1, fpost.(θ|x) is proportional and not necessarily equal to P(x|θ) fprior(θ), since the integration of

P(x|θ) fprior(θ) on the parameters space Θ is also not necessarily equal to 1.
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The introduction of Bayesian statistics in the field of decision making under risk can be

attributed to Nilsson et al. (2011), who developed a Hierarchical Bayesian measurement of

Prospect Theory parameters.5 In a hierarchical approach, individual parameters are supposed

to be drawn in the same prior distribution of parameters—called hyper-parameters—that have

to be determined. This procedure allows collective inference since each subject contributes to

the elicitation of hyper-parameters and thus, indirectly to the elicitation of the other subjects’

parameters. Nilsson et al. (2011) demonstrate that this method outperforms classical maximum

likelihood approaches, obtaining estimates that are more stable and reliable. This Hierarchical

Bayesian approach is also supported by Scheibehenne and Pachur (2015), who obtain relatively

similar results using another dataset.

Hierarchical Bayesian models have been extended to various research questions. Toubia et

al. (2013) use this framework to evaluate the predictive power of their preference elicitation

procedure. Balcombe and Fraeser (2015) pursue further research in this direction and compare

the statistical performance of different functional forms of the Prospect Theory in the gain

domain as well as those of a few of alternative models. This methodology has been applied

by Ferecatu and Onçuler (2016) to the study of both risk and time decisions. Baillon et al.

(2020) complete this literature by adding the possibility to elicit a mixture model within an

HBE framework. More precisely, they assume that subjects are heterogeneous in the fixation

of their reference point and measure the probability for each individual of following different

reference-dependent decision models. Gao et al. (2022) extend this literature to the measure

of the welfare impact of insurance decisions, using also an RDU model. Note, however, that

Murphy and ten Brincke (2018) have shown that hierarchical models can also be implemented

without Bayesian statistics and provide similar gains in terms of stability and predictive performance

of the decision models.

We believe a hierarchical approach is especially important in our context. In the presence

of a maximum likelihood approach at a subject level, an absence of loss in terms of predictive

power or goodness-of-fit with the assumption of a unique utility function could have been

seen as the simple effect of a form of regularization procedure, avoiding the risk of over-fitting

5In this paper, the terms "Prospect Theory" refer to the model initially called Cumulative Prospect Theory

(Tverky and Kahneman, 1992), following the terminology from Wakker (2010). Let us also note here that Jarnebrant

et al. (2009) are technically the first authors to introduce a Bayesian framework in decision theory. However, their

work significantly departs from the rest of the literature, since they apply Bayesian statistics to the elicitation of a

probit model, and not directly to a structural model of decision under risk.
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inherent to a non-hierarchical approach when the number of individual observations is small.

Thus, we think it is more convincing to compare a model with a unique utility function, or a

unique PWF, to the most straightforward form of regularization found in the literature, namely

the hierarchical approach.6

3 Methodology

3.1 Data description

The data we use are drawn from an experimental study by Baillon et al. (2020). In this

dataset, subjects, who were located in Moldova, had to select the lotteries they prefer in a

series of different binary decisions. Figure 1 presents an example of such decisions, with

outcomes expressed in the local currency (Moldovan Lei). A common experimental protocol

in the field (e.g., Hey and Orme, 1994; Harrison and Rutström, 2009), this experiment provides

nevertheless several specific features particularly suitable for our study.

Choice

A

300 Lei

0.55

405 Lei

0.45
Choice

B

135 Lei

0.10

240 Lei
0.55

555 Lei

0.3
5

Figure (1) An example of binary lottery choice

Although the subjects had only one chance out of three to see one of the selected options

eventually played, the stakes involved were large according to the standards of experimental

economics. Baillon et al. (2020) argue that "the subjects who played out their choices for real

earned 330 Lei on average, which was more than half the average weekly salary [at the time

6Nevertheless, we plan also to use the more classical maximum likelihood approach as a robustness check for

the final version of the paper, which is still, at this stage, a work in progress.
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of the experiment]". Two subjects won the highest price possible of 601 Lei, the equivalent of

an average week’s salary. In addition to their potential gains from playing the lottery, all the

participants received a fixed fee of 50 Lei.

To the best of our knowledge, the data from Baillon et al. (2020) are the only ones dealing

with such monetary incentives within a Random Lottery Pair design (Harrison and Rutström,

2008). The few other databases that include monetary rewards of this magnitude generally

offer a limited number of questions to the participants (e.g., Tanaka et al. 2010). Even if having

a high-stake experiment is almost always an advantage in itself, this feature is especially

important for our purpose. Determining the origin of heterogeneity in risk attitudes using

low-stake lotteries necessarily downplays the importance of the utility function, since the latter

is often assumed to be linear in small intervals. It should also be noted that since only one

decision could potentially be played, we avoid hedging behaviors from the participants, thus

facilitating the elicitation of risk preferences.

Subjects were students or employees at the Technical University of Moldova and had sufficient

numeracy skills to understand the questions. Overall, 139 subjects participated in the experiment,

and each of them made 70 different binary choices. The participants were aged between

17 to 47 years, with an average of 22, and approximately 60 % of them were male. Three

observations out of 9730 were discarded for apparent mistakes in the data recording.7

This experiment was designed such that a large variety of binary choices would be presented

to the subjects. The experiment thus comprised both simple choices with certainty amounts (8

choices) and complex choices with at least three outcomes for each option (19 choices). More

importantly, the algorithm employed by Baillon et al. (2020) to construct their choices ensures

the complete coverage of the outcome and of the probability spaces (from 0 to 601 Lei and from

0 to 1, respectively). The main goal of their algorithm was to have, as they state, "minimally

correlated choices" that should "lead to more efficient and more robust estimates." Figure 2

introduces the frequencies at which the different outcomes and cumulative probabilities are

present in the choices offered to the subjects, confirming full coverage of both the outcome

and of the probability spaces.8 This feature of the database is particularly suitable for non-

parametric methods of risk preference elicitation. Otherwise, the estimation of some of the

7For those three observations, the values taken by the decision variable were inconsistent with the codebook.
8Note that we have preferred to introduce the cumulative probabilities of the outcomes and not their

probabilities, because, in an RDU model, it is the cumulative probabilities which appear in the PWF function,

and not the probabilities.
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values in the utility function or in the PWF would have to rely on a small number of answers

from the participants.

(a) The kernel density of the experimental

outcomes in the experiment (in Lei)

(b) The kernel density of the cumulative

probabilities in the experiment

Figure (2) The distributions of the probabilities and outcomes presented to the subjects

The last interesting feature of this dataset is that five questions were proposed twice to

the participants, enabling us to compute a consistency rate. This rate is approximately 70 %,

which corresponds to the consistency rate generally reported for non-trivial decisions under

risk (Stott, 2006). Thus, we obtain the maximal accuracy rate achievable, which constitutes a

useful benchmark of predictive performance.9

This consistency rate can be employed to measure the "completeness" of decision models.

In a recent study, Fudenberg et al. (2022) consider a theory as "complete" when its prediction

errors correspond to irreducible errors, given the existence of a stochastic component in decision-

making. A low predictive power is uninformative when it comes to the completeness of a

theory, since it could correspond to the best performance that one can achieve with noisy data.

Here, the consistency rate can be interpreted as determinant information for measuring the

completeness of a theory, because any decision model assuming stable preferences during the

experiment cannot provide an accuracy rate higher than the consistency rate.10

For the more technical aspects, the experiment was run on computers, and the order of

the questions was randomized. The order of the choices presented to the subject— i.e., which

option is considered as lottery A or lottery B — was also randomly selected. The experiment,

9Baillon et al. (2020) also interpret the consistency rate in a similar way.
10To our best knowledge, the only manner to obtain an accuracy rate higher than the consistency rate would be

to find systematic patterns of randomization from the participants (e.g., Agranov and Ortoleva, 2017), a question

that is beyond the scope of this paper.
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including the reading of the instruction, was completed, on average, in 30 minutes by the

participants.

3.2 Eliciting risk preferences

3.2.1 Rank-dependent utility theory

We apply our targeting approach of dealing with heterogeneity, which is developed in the next

section, to one of the most prevailing theories of decision under risk: the Rank-Dependent

Utility model. The Rank-Dependent Utility model was developed by Quiggin (1982), and its

primary objective is to capture the propensity for an individual to overweight or underweight

probabilities in her decision process, without violating the stochastic dominance principle.11

In this model, the decision-maker evaluates different lotteries and then chooses her best

option according to her preferences. Each lottery corresponds to a probability distribution

over money. Here, xi refers to an amount of money, and pi refers to the probability that is

assigned to the outcome xi. The lottery the subject has to evaluate is commonly denoted by the

vector (p1 : x1, ..., pn : xn). This vector is presented here in decreasing order, such that xi > xj

for any i < j.

Compared with the EU model, in an RDU model, subjects do not only transform money

into utility but also probabilities into decision weights. According to the RDU model, the

decision-maker chooses the option that maximizes the following decision criterion:

U =
n

∑
i=1

πiu(xi) (2)

with

πi = w(
i

∑
j=1

pj)− w(
i−1

∑
j=1

pj), (3)

where u(·) designates the utility function and w(·) the probability weighting function.

The utility function is normalized, such that the highest outcome in the database corresponds

to a utility of 1 and the lowest to a utility of 0. Similarly, we normalize the outcomes such that

the highest outcome in the whole experiment (601 Lei) is now equal to 1 and the lowest (0 Lei)

to 0.
11Having only outcomes framed as gains here, we can also argue, such as in Balcombe and Fraeser (2015), that

we equivalently study the Cumulative Prospect Theory in the gain domain.
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In the parametric part of this study, we assume a traditional power specification of the

utility function,

u(x) = xr, (4)

with r > 0.12 For the PWF, we assume another classical functional form proposed by Prelec

(1998), such that

w(p) = exp(−β(− log(p))γ). (5)

In Equation 5, β determines the elevation of the function, while γ captures its curvature.

Most especially, a γ inferior to one gives to the function the inverse-S shaped aspect generally

found at an aggregate level. This decomposition is useful because, as explained in the Introduction,

our results indicate that all heterogeneity in risk behavior can be attributed to the heterogeneity

of the PWF. Thus, this distinction enables us to determine which specific element in the PWF,

its elevation, or its curvature is essential for describing individual differences in risk attitudes.

For the non-parametric part of this paper, we estimate n different equally-spaced levels of

the utility function and the PWF. For n = 3, for instance, we would determine u(0.25), u(0.5),

u(0.75), w(0.25), w(0.5), and w(0.75). The intermediate values of the utility function and the

PWF are inferred using a linear interpolation. If we write N = n + 1, then for an outcome x

between (k − 1)/N and k/N, its corresponding utility is given by the equation

u(x) =
x − k−1

N
k
N − k−1

N

(uk − uk−1) + uk−1. (6)

Similarly, for a probability p between (k − 1)/N and k/N, its corresponding decision

weight is given by

w(p) =
p − k−1

N
k
N − k−1

N

(wk − wk−1) + wk−1. (7)

Therefore, the shape of the two functions depends on two vectors, θu = (u0, u1, ..., uN) and

θw = (w0, w1, ..., wN). Thus, u0 designates the utility of the worst possible outcome in the

experiment (normalized to 0), and uN refers to the utility of the best possible outcome in the

12The more general form u(x) = x1−ρ

1−ρ is not relevant here because one of the possible outcomes in this experiment

was 0, which could give an infinite negative utility in the case where ρ > 1.
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experiment (normalized to 1). Likewise, w0 and wN are defined such that w0 = w(0) = 0 and

wN = w(1) = 1. The utility and the PWF can be then rewritten as

u(x) =
N

∑
k=1

min{max{Nx − (k − 1), 0}, 1}(uk − uk−1), (8)

and

w(p) =
N

∑
k=1

min{max{Np − (k − 1), 0}, 1}(wk − wk−1). (9)

3.2.2 Defining appropriate priors

As stated in the previous sections, using Bayesian statistics requires assuming a prior belief on

the parameters’ distribution. These prior distributions are relatively straightforward to define

for the parametric part of this study. As there exists a positivity constraint on all the individual

parameters (r, γ, and β), we assume that they are drawn from a log-normal prior distribution

with log r ∼ N (µr, σr), log γ ∼ N (µγ, σγ), and log β ∼ N (µβ, σβ). The position and dispersion

hyper-parameters, µ⋆ and σ⋆, have a normal and an inverse-gamma distribution, respectively,

as hyper-priors. These hyper-priors are diffuse and uninformative.

Defining appropriate priors is more challenging in the non-parametric approach and requires

more details. In this case, there exists two different but interdependent problems. Supposing a

hierarchical model, the first issue is to define a relevant hyper-prior on the hyper-parameters;

the vectors θ∗u = (u∗
0 , u∗

1 , ..., u∗
N) and θ∗w = (w∗

0 , w∗
1 , ..., w∗

N). θ∗u or θ∗w correspond to the levels

of the utility and the PWF of the population on average, such that we penalize the elicited

parameters far from those values. Therefore, θ∗u and θ∗w mostly correspond to the non-parametric

counterpart of the position parameters µ⋆ for the parametric study. The second problem is to

determine a prior that penalizes individual estimates far from the hyper-parameters.

Let us start by solving the first issue, namely, the definition of an appropriate hyper-prior

for the hyperparameters θ∗u and θ∗w. The first proper characteristic required for our hyper-

prior distribution is to have a null joint-density for any non-increasing sequence of θ∗u or

θ∗w. Otherwise, the hyper-parameters would implicitly correspond to a non-increasing utility

function or PWF, and thus to a DM that could prefer stochastically dominated options.

The second important property is to assume a prior distribution that does not favor either

convex or concave forms. Thus, another criterion is that the prior should be centered on
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linear functions, such that the utility and the probability weighting levels have the following

expected values:

E(u∗
k ) = k/N and E(w∗

k ) = k/N,

for any k ∈ {1, ..., N − 1}. The last property is to have a prior distribution vague enough

such that it is possible to recover any shape of the utility or of the PWF for a large number of

observations.

The solution we propose in this paper is to define this hyper-prior sequentially. First, we

fix n levels for each function, with n = 2K − 1 (or N = 2K) and K any natural number. Then, we

assume that the "middle levels", u∗
N/2 and w∗

N/2, follow a uniform distribution of parameters 0

and 1. This prior reflects our general ignorance about the overall shape of the functions. From

the first distribution on the hyper-priors, we define the prior distribution of two additional

intermediate utility levels as


u∗

N/4|u∗
N/2 ∼ U (0, u∗

N/2)

u∗
3N/4|u∗

N/2 ∼ U (u∗
N/2, 1),

(10)

and we define w∗
N/4 and w∗

3N/4 similarly. With a second iteration of this process, we can

also define four additional intermediate levels :


u∗

N/8|u∗
N/4 ∼ U (0, u∗

N/4)

u∗
3N/8|(u∗

N/4, u∗
n/2) ∼ U (u∗

N/4, u∗
N/2)

u∗
5N/8|(u∗

N/2, u∗
3n/4) ∼ U (u∗

N/4, u∗
3N/4)

u∗
7N/8|u∗

3N/4 ∼ U (u∗
3N/4, 1).

(11)

Then, we define the additional w∗
N/8, w∗

3N/8, w∗
5N/8, and w∗

7N/8 levels in a similar fashion.

The prior distribution eventually obtained is presented in Figure 3, with the 2.5%, 25%, 50%,

75%, and 97.5% quantiles of the hyper-prior distribution.

We stop this process at three iterations, and we keep 7 points for each function (which

also corresponds to N = 8). According to our estimates, limiting ourselves to n = 7 seems

sufficient to obtain a reliable measurement of the utility and of the PWF. We can verify without

demonstration that the expected values of the utility and probability weighting levels do not

bias the estimates toward concave or convex forms, and that the density of any non-increasing

sequence of utility or probability weighting levels is null. Also, as indicated in Figure 3, the

distribution eventually obtained can be qualified as uninformative.
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Figure (3) Prior distribution of the utility function.

Now, we propose a strategy to penalize individual estimates that are distant from the

functions denoted by θ∗u and θ∗w. As above, we reason sequentially, and we assume, as a prior

for uN/2,j, the middle utility level of the subject j, a normal distribution of parameters u∗
N/2 and

σu, truncated at 0 and 1, such that we penalize the individual estimates of uN/2,j that are far

from u∗
N/2. Then, we assume that uN/4,j follows a normal distribution of parameter u∗

N/4 and

σu, but is truncated both on the left at 0 and on the right at uN/2,j to guarantee that the final

estimates correspond to an increasing function. Similarly, u3N/4,j follows a normal distribution

of parameter u∗
3N/4 and σu, but is truncated on the left at uN/2,j and on the right at 1. Thus, we

have


fN/4,j(uN/4,j|uN/2,j) =


f (uN/4,j|u∗

N/4,σu)

F(uN/2,j|u∗
N/4,σu)−F(0|u∗

N/4,σu)
if u3N/4,j ∈ [0; uN/2,j],

0 otherwise;

f3N/4,j(u3N/4,j|uN/2,j) =


f (u3N/4,j|u∗

3N/4,σu)

F(1|u∗
3N/4,σu)−F(uN/2,j|u∗

3N/4,σu)
if uN/4,j ∈ [uN/2,j; 1],

0 otherwise,

(12)

where f (x|µ, σ) and F(x|µ, σ) are the density and the cumulative distribution function of

a normal distribution of parameters µ and σ. Thus, fN/4,j and f3N/4,j are the densities of our

priors. We also define four additional intermediate levels in a similar fashion.

As a consequence, we have as a prior a distribution similar in its construction to the hyper-

prior, since when σu or σw tend toward infinity, each prior distribution tends toward a uniform

distribution. The hyper-prior distribution is a limit case of the prior distribution, which implies
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that it is only possible to improve the reliability of our individual estimates with that prior. If

no collective inference can be made concerning the shape of the utility function or of the PWF—

in other words, if it is impossible to improve the quality of the estimates by using the decisions

of others subjects—σu and σw become high, and the prior does not significantly differ from the

hyper-prior.

3.3 The error model

To estimate the parameters of an RDU model using Bayesian statistics, we have to assume an

error model that specifies the probability of choosing a particular option, given the utility and

the probability weighting functions of a subject. Throughout this paper, we suppose a standard

logit specification with an additional tremble parameter, where the probability of choosing an

option B over an option A is given through

P(X = B) = ω/2 + (1 − ω)
eUB/ξ

eUA/ξ + eUB/ξ
, (13)

where UA and UB are the deterministic utilities of the options A and B (given by the RDU

model, see Equations 2 and 3), and ξ and ω are two noise parameters.13

Individual ξ are assumed to be drawn in the same log-normal distribution. For the sake of

simplicity, and to avoid possible identification issues with ξ, we also assume that the tremble

parameter is universal. As ω is likely to be relatively small, we define its prior through a beta

distribution of parameters 1 and 9, following recommendations from Kruschke (2015, p. 621).

Note that additional noise specifications will also be considered in the robustness checks, with

similar results. The model was estimated using JAGS, and the details of the Markov Chains

Monte Carlo (MCMC) are introduced in Appendix F.

13The tremble parameter ω possesses two different interpretations. First, its psychological interpretation could

be the following: in addition to their ability to discriminate the best choice, which is captured by ξ, the subjects can

also make another kind of mistake when they sometimes randomly click on an option. The second interpretation

is statistical: the addition of a tremble parameter is generally recommended in Bayesian analysis to make the

estimates more robust when the sample corresponds to a small number of dichotomous variables (see, for instance,

the discussion regarding on the robust logistic regression model, in the reference textbook by Kruschke, 2015, p.

621). As demonstrated in the robustness section and in the appendices, the addition of a tremble parameter tends

to improve the predictions of the models.
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4 Testing the predictive power

4.1 The importance of the predictive power in decision sciences

Before introducing the evidence that all heterogeneity in risk attitude can be attributed to the

heterogeneity in probability weighting, we should explain another relative innovation of this

study with respect to the rest of the research on decisions under risk.

As stated in Introduction, comparing the statistical performance of structural models of

decision-making, or model competition, is a widespread approach in behavioral economics for

evaluating theories. The earliest theory competitions using the functional forms of the models

of decisions under risk were Camerer and Ho (1994), Hey and Orme (1994), and Loomes and

Sugden (1995). This approach has been especially employed to study models of error14 but has

also been extended to various issues such as decisions under ambiguity15 or time decisions16.

However, as Hey et al. (2010) state, in those competitions, "statistical significance tells us

nothing about economic significance. Nor does it tell us whether the increase in statistical

predictability is worth the reduction in theoretical parsimony." (p.83). Given the importance

of this approach, it is surprising that, until now, the characterization in absolute terms of the

predictive power of the models has not been a primary issue, as it would be interesting to know

whether a difference in terms of predictive accuracy or goodness-of-fit between two models

corresponds to, for instance, a difference between an excellent model and a poor model, or a

difference between a fair model and a poor model.

This eventually constitutes a paradoxical situation: while the insufficient predictive power

of the standard theory is often given as a primary reason for the development of behavioral

economics, far too little attention has been paid on the qualitative and absolute assessment of

the models’ predictive power. Glöckner and Pachur (2012) and Peysakhovich and Naecker

(2017) are two exceptions, but it should be noted that their manner of measuring the quality of

predictions significantly differs from ours.

To deal with the predictive power of the behavioral models in-depth, we adopt the standard

approach from machine learning, an area in which the issue of prediction is crucial. Nowadays,

the idea that machine learning will transform the practice of econometrics and applied economics

14e.g. Loomes et al. (2002), Blavatskyy (2011), and Wilcox (2011).
15e.g. Hey et al. (2010) and Kothiyal et al. (2014).
16e.g. Arfer and Luhmann (2015) and Blavatskyy and Maafi (2018).
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is widespread.17 In this section, we argue that the methodology usually recommended in

machine learning to assess the predictive performance of models can be particularly suitable

for model competitions in decision sciences.18 In comparison with most of the literature on

risk-preferences and related topics, the key differences in this approach are (1) the choice of

the indicators of predictive performance that possess a qualitative interpretation and (2) the

existence of a train set/test set distinction (the second point is already present in several papers

such as Wilcox, 2011).

4.2 Indicators of predictive performance

The simplest of the predictive indicators used in this study is probably the accuracy rate, or hit

rate, but it can also be very misleading. It is well-known that for imbalanced data, it is easy

to reach a high accuracy rate with a simple random guess.19 However, it is worth noting that

the accuracy rate can be even more problematic when using lottery choices data. While the

data might appear to be balanced at the aggregate level with an almost equal distribution of

risky choices and safe choices for the whole database, the dataset of each subject is generally

imbalanced, as the population is heterogeneous in terms of risk preferences. As models are

estimated at an individual level, computing the aggregate accuracy rate on the whole dataset

is no different from computing the mean of the individual accuracy rates. Consequently, even

though the aggregate accuracy rate can be seen as relevant at first glance, it only corresponds to

the mean of accuracy rates obtained using imbalanced data, and, thus, to the mean of irrelevant

17In an already seminal paper on this issue, Varian (2014) writes, "My standard advice to graduate students

these days is go to the computer science department and take a class in machine learning" (p. 3). More recently,

Camerer (2018) also highlights that the impact of machine learning should be more potent in behavioral economics

than anywhere else in economics. Machine learning allows economists to handle high-dimensional data more

easily, and as Camerer (2018) says, behavioral economics precisely tends to deal with a more significant number of

relevant factors than the other sub-fields of economics.
18Let us clarify the relationship of our approach with machine learning. We do not pretend to have a machine

learning approach for this issue. We have simply chosen to import its practices to treat a question for which this

field is especially advanced. As Varian (2014) states, "Machine learning is concerned primarily with prediction"

(p.4).
19By imbalanced data, we mean, in the context of binary choices, a situation where an option is chosen with a

higher frequency than the other. The fact that random guesses can produce high accuracy rates on imbalanced data

is sometimes called the "accuracy paradox." A typical example of this problem can be given by a model always

predicting the most frequent decision in the dataset. If the data are imbalanced (e.g., if the individuals make the

same choice 90% of the time) the accuracy rate of this model will also be high, while its predictive performance is,

by definition, null.
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indicators of predictive performance. Therefore, the accuracy rate will only be given as a

complementary piece of information, and to compare it to the consistency rate (see above).

There exists a vast literature on predictive performance measures, and multiple indicators

more relevant than the hit rate have been developed.20 The ones that we introduce in this

paper avoid the biases linked to imbalanced data issues.

The second indicator that we use is Cohen’s kappa (Cohen, 1960), a statistic initially designed

to measure the degree of agreement between two judges or experts, that has been generalized

to the measurement of the adequacy between predictions and observations. Its formula is

κ =
accuracy rate − pe

1 − pe
, (14)

where pe is the probability of being correct only by chance,

pe = P(prediction = 1)P(observation = 1) + P(prediction = 0)P(observation = 0).

Thus, Cohen’s kappa is found between −pe/(1 − pe) and 1. The following scale is often

given in machine learning textbooks for the interpretation of this indicator (see for instance

Lantz, 2015, p. 323):

• κ < 0: Disagreement

• κ ∈ [0.00; 0.20]: Poor agreement

• κ ∈]0.20; 0.40]: Fair agreement

• κ ∈]0.40; 0.60]: Moderate agreement

• κ ∈]0.60; 0.80]: Good agreement

• κ ∈]0.80; 1.00]: Very good agreement.

The adequacy between predictions and observations can also be measured through a simple

correlation coefficient. The obtained indicator is often called the Matthews’ correlation coefficient

or MCC. The value of this indicator is given by

20See Sokolova et al. (2006) for an overview of the most popular indicators in machine learning.
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MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (15)

where TP, TN, FP and FN are the True Positive, True Negative, False Positive and False

Negative rates, respectively. The MCC is defined between −1 and 1 and can be interpreted on

the same scale as a standard correlation coefficient.

4.3 Estimation of predictive power

To test the predictive accuracy of a model, it is preferable to measure the adequacy between

predictions and observations on a dataset that has not been used for training the model.

Otherwise, it is not the predictive performance of a model that is measured, but its capacity

to rationalize a given dataset, thereby favoring complex models prone to overfitting. Thus,

one-fifth of the data were reserved to measure the predictive accuracy (1933 observations in

total, between 12 and 16 observations per subject).21 Except for the accuracy rate, predictive

performance measures can differ depending on the manner in which we define the variable to

predict. In this study, we measure our indicators using the dummy variable that takes 1 when

the DM chooses the "risky option" over the "safe option" and 0 otherwise.22

To make predictions from the estimates, we use the posterior predictive distribution, such that

the probability of taking the risky option is given by

P(X = 1) =
∫

θ∈Θ
P(X = 1|θ) fpost.(θ)dθ. (16)

In our setup, we can use the indicators of predictive performance introduced in the previous

section in two ways:

• First, by considering the data as a whole and then measuring the predictive power on

the entire test set.

• Second, by considering each subject independently and studying the distribution of the

indicators over the individual test sets.
21Note here, we are limited by the computational cost of our models. It is clear that a "K-folds" approach, where

the dataset is divided into K different tests used alternatively, would have been more rigorous.
22We define the risky option as the option with the highest variance.
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For this reason, the Tables below present the predictive performance measures at the aggregate

level, as well as the medians of individual Cohen’s kappas.23

5 Results

5.1 Results from the baseline RDU model

Regarding our non-parametric approach, the first way to describe the participants’ risk preferences

is to introduce the estimates of a hypothetical representative agent who would have taken all

the decisions from the database. Despite its limitations, this popular approach enables us to

verify that the preliminary results given by our non-parametric approach are consistent with

the rest of the literature. The estimates of this fictitious individual are described in Figure 4,

which shows the distribution of the median utility (left graph) or probability weighting (right

graph) levels of the posterior distribution, as well as two lower (2.5 % and 25%) and two upper

(75% and 97.5 %) quantiles. As shown in Figure 4, a classical curvature can be recovered for

both for the utility function and the PWF. The utility is thus mildly concave, and the probability

weighting function is inverse-S shaped. Thus, the representative agent tends to overweight

small probabilities (below 0.3) and to underweight larger ones. However, individual estimates

possess, on average, more unstable or atypical shapes, such as exclusively concave or convex

PWF or irregular utility functions (see Appendix G).

(a) Utility Function (b) Probability Weighting Function

Figure (4) The representative agent’s estimates

23Individual MCC are not presented here because this indicator could not be computed for a significant part of

the subjects.
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Table (1) Distribution of the point estimates, Baseline RDU model

Parameters 2.5 % 25 % Median 75 % 97.5 %
log r −1.8 −1.39 −1.16 −0.97 −0.14
log β −1.38 −0.40 0.20 0.61 1.41
log γ −1.75 −1.07 −0.62 −0.05 0.71
log ξ −4.31 −3.86 −3.50 −3.29 −2.87

Note: This table describes the distribution of the point estimates of each parameter at an individual level of a

classical RDU model. Each point estimate corresponds to the median of the posterior distribution of each

individual parameter.

Concerning the parametric part of this study, Table (1) summarizes the results given by

the estimation of the baseline RDU model, with no constraint on the PWF or on the utility

function. For each parameter, we took the median values of the posterior distribution as point

estimates. As the parameters are strictly positive and assumed to be drawn from the same

log-normal distribution, Table (1) introduces the log transformation of these values for more

readability. Predictably, the utility function appears to be concave (with log r < 0) for all the

subjects, while most of the subjects display an inverse-S shape of the PWF (with log γ < 0).

The estimation of the universal tremble parameter ω is approximately 0.10.

From this baseline model, the dispersion of the individual estimates seems already more

pronounced for the PWF parameters log γ and log β compared with the utility parameter,

log r. However, this result is not sufficient to conclude that the heterogeneity in risk behavior

is driven by the heterogeneity of the PWF, a conclusion we will more formally demonstrate

below.

5.2 Model competition and main results

We now introduce the main result of this paper, namely that the probability weighting function

appears to drive all the heterogeneity in risk attitudes. To do so, we compare the performance

of the baseline RDU model measured above with that of two constrained RDU models in

predicting the experimental choices made by the subjects. The first of those constraints is the

existence of a unique utility function, and the second, the existence of a unique PWF. In other

words, we assume in the first case that all individual heterogeneity in terms of risk attitudes is

driven by the PWF, while in the second case, all individual heterogeneity can be attributed to

the utility function.
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Table (2) Out-of-sample predictive power, non-parametric approach

Model Constraint Kappa MCC Acc. Median kappa Log-likelihood Vuong test
RDU − 0.32 0.32 0.69 0.18 −1118.21

Unique Utility 0.34 0.35 0.70 0.24 −1098.95 0.03
Unique PWF 0.20 0.22 0.66 0.00 −1139.39 0.002

EU − 0.20 0.20 0.63 0.14 −1227.18 < 0.001
DT − 0.33 0.33 0.69 0.19 −1122.44 0.001

Note: The kappa, MCC, Acc. columns correspond to the Cohen’s Kappa, MCC and Accuracy rate on the complete

test set, respectively. The median kappa corresponds to the median Cohen’s kappa calculated for each individual

test sets (with a test set by subject). The log-likelihood corresponds to the log-likelihood of the model on the

complete test set. The "Vuong test" column corresponds to the p-value of a Vuong test that tests each model

against the baseline rank-dependent utility model (or the baseline rank-dependent utility model against the

model under consideration if this one has a higher log-likelihood). In the column constraint, "-" indicates an

absence of constraint in the elicitation of the model, "Unique Utility" indicates that all the subjects share the same

utility function and "Unique PWF" indicates that all the subjects share the same PWF.

Following Wilcox (2011), we add the out-of-sample log-likelihood and the p-value of a

Vuong test to the different predictive performance indicators introduced in the previous section.

Each Vuong test in Tables (2) and (3) is performed in comparison with the baseline RDU model.

We also add to these results the performances of an EU model and a Dual Theory model (Yaari,

1987). The Dual Theory (DT) describes a special case of RDU models where the utility function

is linear. Thus, the DT corresponds to the exact opposite of the other noticeable special case of

the RDU models, the EU model, that implicitly adopts a linear probability weighting function.

Tables (2) and (3) reveal that the constraint of a unique PWF significantly decreases the

predictive performance of the RDU model, while the same restriction applied to the utility

function does not have a similar effect. Conversely, when a universal utility function is assumed,

the predictive power tends to be higher, although this increase is not statistically significant.

Moreover, both the unconstrained RDU model and the RDU model with a unique utility

function have a predictive performance that can be described as fair or moderate. In contrast,

the predictive performance of the RDU model with a unique probability weighting function

may only be characterized as poor.24 This result is confirmed both in the parametric and

24The confidence interval at 95% of each predictive performance measure is introduced in Appendix A for more

24



Table (3) Out-of-sample predictive power, parametric approach

Model Constraint Kappa MCC Acc. Median kappa Log-likelihood Vuong test
RDU − 0.36 0.37 0.71 0.29 −1065.60

Unique Utility 0.36 0.37 0.71 0.29 −1064.04 0.24
Unique Utility +
Unique Sensitivity 0.33 0.34 0.70 0.29 −1082.03 < 0.001
Unique Utility +
Unique Elevation 0.22 0.27 0.67 0.19 −1115.67 < 0.001
Unique PWF 0.22 0.25 0.66 0.14 −1121.95 < 0.001

EU − 0.19 0.19 0.63 0.11 −1279.40 < 0.001
DT − 0.34 0.35 0.70 0.27 −1077.90 0.02

Note: The signification of the columns "Kappa," "MCC," "Acc.," "Median kappa," "Log-likelihood," and "Vuong

test" remain the same as in Table (2). In the constraint column, "Unique utility + Unique Sensitivity" means that

the individuals share the same r and γ parameters while "Unique utility + Unique Elevation" means that the

individuals share the same r and β parameters.

non-parametric studies.25 Consequently, heterogeneous probability weighting seems crucial

to capture systematic differences in risk attitudes, while the utility function does not seem to

possess similar importance. The unique utility functions we obtain in the parametric and non-

parametric studies are described in Figure 5. As expected, the utility function is, in both cases,

increasing and mildly concave.

In the case of the parametric study, we can now deepen our analysis and test additional

constraints on the parameters by measuring the performance of two models, by assuming (1)

a unique utility function and a unique curvature parameter γ and (2) a unique utility function

and a unique elevation parameter β. When a unique curvature parameter γ is assumed, the

quality of the prediction decreases only moderately. Conversely, assuming a unique elevation

parameter β makes the predictive performance of the RDU model almost as low as that of

the EU model. The heterogeneity of risk attitudes is thus driven mainly by the heterogeneity

in the elevation of the PWF, classically interpreted as optimism and pessimism (e.g., Wakker,

2010), and not by the heterogeneity in the shape or curvature of that same function. As most

readability. The confidence interval of each of these indicators is narrow, with a precision around 0.04.
25Note that the median of the individual Cohen’s kappas is even equal to 0 if we assume a universal probability

function in the non-parametric case.
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heterogeneity in risk attitudes is due to the probability weighting function, it is not surprising

to find that the Dual Theory performs well on this dataset, while the EU model displays poor

predictive performances. Note, however, that the performance of the Dual Theory does not

imply that the utility function is linear, a hypothesis that is rejected both in our estimates (see

Figure 5) and by a Vuong test (see Tables (2) and (3)).

The most predictive models studied here reach a level of predictive accuracy close to the

"completeness" level, as defined above. The unconstrained RDU and the "unique-utility RDU"

models, parametric or non-parametric, provide an accuracy rate around 70%, slightly above

the observed consistency rate.26 From these results, we can also confirm that the non-parametric

methodology gives reliable estimates despite its high degree of flexibility and its risk of overfitting.27

We believe our results also confirm the relevance of our methodology based on the qualitative

assessment of predictive power, which extends beyond the issue of statistical significance. A

Vuong test alone, for instance, is not sufficient to characterize the importance of the disparity

in terms of predictive accuracy between two models. The qualitative differences between the

performances of our models appear here not only as statistically significant but also economically

significant. By analyzing the predictive performance qualitatively, we can also underline the

considerable noise in the decision process of subjects that face risky choices since the best

predictive performance achievable seems, at best, moderate.

5.3 Additional specifications and robustness checks

This section aims to check the robustness of our results to alternative tests or hypotheses. More

specifically, we discuss the robustness of our results using a model competition based on the

in-sample goodness-of-fit of the models rather than their predictive power. We also check

whether the main results of our parametric study can be attributed to a misspecification of

(1) the noise model, (2) the utility function, and (3) the prior chosen for the utility function

parameter. We finally discuss the relevance of the RDU model in comparison with reference-

26If five choices were repeated in the experimental protocol, these choices were not randomized. This explains

the possibility for the accuracy rate to be somewhat above the consistency rate. However, these five choices were

not especially easier nor more difficult than the others, so the consistency rate can still be considered as a good

proxy for the maximal accuracy rate one can achieve on this database.
27If we can observe from the out-of-sample log-likelihood that the non-parametric method is outperformed by

the parametric models, the results are not qualitatively different, as it can be seen with the predictive performance

indicators above. Thus, our non-parametric method constitutes a reliable additional specification, useful to discard

the possibility of an error in the choice of the parametric form.
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(a) Power specification (b) Non-parametric specification

Figure (5) The unique utility function

dependent models. For all of these robustness checks, we limited ourselves to the parametric

approach, as the non-parametric approach is computationally more costly.

5.3.1 Studying the internal goodness-of-fit

We first check the validity of our results by comparing the in-sample goodness-of-fit of our

models rather than their predictive power. We then estimate the models on the complete

dataset (with no train set/test set distinction), and we compute the Deviance Information

Criterion (DIC) of each model.28 As in the previous sections, the DIC favors the unique utility

function model against all the other models, including the baseline RDU model (see Appendix

B).

To check whether the difference in the goodness-of-fit between the two models is statistically

significant, we run a mixture model that includes a parameter I, which equals 1 if the true

model is the baseline RDU model and 0 if the RDU model with a unique utility function is the

true model. The average I in the MCMC sample gives an estimation of the probability that the

subjects have different utility function. Thus, we now assume

P(X = 1) = (1 − I) · PUnique(X = 1|θUnique) + I · PBaseline(X = 1|θBaseline), (17)

where θUnique are the parameters of the unique utility model and, θBaseline are the parameters

of the baseline RDU model. The prior and hyper-prior distributions are the same as those in

the previous sections. The probability for the baseline RDU model to be true is inferior to 0.001,

28The DIC is a measure similar in its construction to the Akaike Information Criterion but more adapted to

Bayesian statistics.
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and thus our estimates still strongly support that the utility function is stable among subjects.29

5.3.2 Robustness to additional specifications

We also check the validity of our results exploiting two alternative noise specifications: the

classical logit specification without the tremble parameter (see Equation 13) and the heteroscedastic

specification proposed by Wilcox (2011). In the Wilcox’s heteroscedastic specification, or Contextual

Utility model, the noise parameter ξ in Equation 13 becomes a function of the lottery choice

options, labeled A and B, such that

ξ(A, B) = ξ̄ · (umax(A, B)− umin(A, B)), (18)

where umax(A, B) is the utility of the best outcome possible in the lotteries A and B, umin(A, B)

the utility of the worst outcome possible, and ξ̄ is a new parameter to be estimated. Thus, with

this specification, choices that have an important gap between the worst and the best outcomes,

also generate more incertitude in decision-making. We demonstrate in the appendices that

with those new noise structures, the predictive performance of the models remains stable

across specifications, and our conclusions remain unchanged.30

Regarding the other robustness checks, we focus on the RDU model with a unique PWF,

and we verify that its low predictive performance is not due to a misspefication. We test

two additional prior distributions on r for the RDU model with a unique PWF: a normal

distribution truncated at 0, and a gamma distribution. In each of these specifications, the

predictive power of the RDU model with a unique PWF remains unchanged and is largely

inferior to both the performance of the baseline RDU model and to an RDU model with only

a unique utility function. We also test whether other functional forms of the utility function

could provide a better predictive performance. More precisely, we use an expo-power utility

function, as proposed by Saha (1993), and a utility function that has the same functional form

as our PWF (see Equation 5). The purpose of this latter specification is to take into account that

the importance given to the PWF over the utility function in our results might only reflect the

29Bayesian hypothesis testing is different in its construction from the tests performed in frequentist statistics, and

indirectly penalizes complex models. As a consequence, the probability of the constrained model being the true

model against the unconstrained model can be greater than 0.5 or even close to 1 if that constraint is not associated

with a decrease in the goodness-of-fit.
30Note that, in this case, we adopt a probit model with a tremble parameter, instead of a logit model, following

the specification used by Wilcox (2011).
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flexibility of the functional form proposed by Prelec (1998).31 As before, the results obtained

with these two new specifications of the utility function do not affect our conclusions (see

Appendix C and D).

5.3.3 Possibility of a reference-dependent behavior

As already stated, the database used here was initially designed to test different reference

points in decision-making under risk—such as the status quo or the stochastic reference point

proposed in the Kőszegi-Rabin model (Kőszegi and Rabin, 2006). Thus, there could exist a

misspecification of our own statistical design if the participants have indeed reference-dependent

preferences and not the basic RDU model assumed above. The first counter-argument against

a misspecification of our model is that, as we have already seen, the RDU model appears as a

"complete theory" in the sense of Fudenberg et al. (2022), since the accuracy rate of our highest-

performing models is equivalent to the consistency rate. Thus, no significant gains in terms of

predictive accuracy can be achieved through new and more complex decision models.

Nevertheless, this question is investigated in further detail in Appendix E where we revisit

some of the results from Baillon et al. (2020). In particular, we show that the evidence for

reference-dependent behaviors in this database can be reevaluated. We demonstrate more

specifically that with the noise specification we proposed in this study, a mixture model of

different reference-point rules gives a lower statistical performance than a simpler RDU model

(as measured by the DIC). Moreover, the RDU model, or the status quo reference point, was

already considered by Baillon et al. (2020) in their conclusions as the most widespread model

of decision under risk among the subjects. Therefore, we may conclude that the decisions not

explained by the RDU model most likely reflect pure noise.

6 Discussion and further research

The possibility of a utility function stable among individuals has numerous implications. From

a theoretical point of view, the idea that heterogeneity in risk attitudes is a matter of optimism

or pessimism contradicts the idea that the EU theory could constitute even a relevant approximation

of true risk preferences. According to our results, the PWF is more than a simple auxiliary

feature that improves the descriptive performance of the standard model. Since the PWF is, by

31Considering the function provided by Prelec (1998) to describe the PWF as a possible utility function is relevant

here since both the outcomes and the utility were normalized between 0 and 1.
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definition, missing from the EU theory, this model can only mischaracterize the very nature of

the heterogeneity in risk attitudes. This mischaracterization can be particularly harmful when

the EU model is used to provide welfare evaluation, which is in general very dependent on the

shape of the utility function (e.g., Harrison and Ng, 2016). Moreover, assuming a unique utility

function could make behavioral economics models’ applications more tractable, especially in

situations involving several interacting agents or individuals.

From an empirical point of view, our targeted heterogeneity approach constitutes a reliable

alternative to what we could call the "one individual, one model" approach. By targeting

heterogeneity only in some aspects of the model, estimates could also become more readable.

In the context of decisions under risk, for instance, the optimism or elevation parameter can be

used as a unique indicator of risk aversion, even when facing a non-EU model. Currently,

the only alternative approach to obtain a unique indicator of risk attitude when there are

multiple decisions to aggregate is to assume an EU model with one risk aversion parameter,

even when it fits the data poorly—which is, as we have seen above, often the case.32 Our

targeting heterogeneity approach could be especially useful in measuring risk preferences on field

or survey data, where the number of questions is typically low and the risk of overfitting is

especially high.

Moreover, we believe that the key role of the elevation of the PWF in explaining risk

attitudes constitutes an important result in itself. Indeed, a considerable number of papers in

decision sciences adopt as their main specification, or even as their only specification, functional

forms not allowing for the elevation of the PWF to vary (e.g., Baillon et al., 2020; Harrison and

Rutström, 2009; Hey et al., 2009), which could constitute an important mispecification issue.

Given these results, it could be tempting to assume further implications with normative

purposes. If all the subjects share the same utility function, and if probability weighting is

considered as a rationality bias, then for each choice there should exist an ideal decision that

every subject should adopt. However, this perspective was not considered in this paper for at

least two reasons. The first is that probability weighting is not universally interpreted as an

irrational feature; for instance, Harrison and Ng (2016, 2018) and Gao et al. (2022) use an RDU

model to measure the welfare gains from insurance decisions. Second, it is not certain that

the utility function that describes the best risk attitudes is also the most relevant to describe

welfare gains or well-being. Finally, the subjects of this study were essentially composed of

students from the same university, and it is unknown if more heterogeneous utility functions

32For an example of such an approach on large survey data, see Chapter IV and Jagelka, 2020
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could be found on a sample more representative of the general population. The results found

here could also be influenced by the nature of the decision task (i.e., binary decisions), as the

experimental procedure may affect the distribution of the structural parameters in decision

models (e.g., Hey et al., 2009).

Regarding our methodological contributions, we proposed several innovations to demonstrate

our results, and this paper could also constitute a blueprint for new research questions. This is

particularly true concerning our non-parametric statistical design, which is adaptable to other

error structures (e.g., Blavatskyy, 2011) and to other decision models (e.g., Bell, 1982, Loomes

and Sugden, 1982, Gul, 1991, or Kőszegi and Rabin, 2006). The framework proposed here

could also be useful for topics concerning decision-making in general, beyond the issue of risk

preferences. An extension of this methodology to ambiguity attitudes, for instance, would be

relatively straightforward, by exploiting the similarities of the RDU model and the "Choquet-

Expected Utility" model (see Wakker, 2010).

Our non-parametric approach could be helpful, even for studies that opt for parametric

strategies, in two different ways. One is ex ante, in which our design could be employed

for choosing a relevant functional form, which could be selected depending on the shape of

the functions found non-parametrically at an aggregate level (e.g., from the representative

agent estimates). The other is ex post; in this case, our non-parametric approach could serve

as a robustness check, since the parametric forms that are clearly outperformed by the non-

parametric method are likely to be misspecified.

7 Conclusion

Following the increasing interest being paid to Bayesian statistics in decision sciences during

the last decade, we developed a new methodology to determine what drives heterogeneity in

risk attitudes. This procedure is innovative in several ways. First, we apply both parametric

and non-parametric approaches to test our hypotheses. Second, we measure the predictive

performance of the models under consideration not only in relative, but also in absolute terms.

Our results reveal that most of the heterogeneity in risk behaviors can be attributed to heterogeneity

in probability weighting. More precisely, the variety of the risk behaviors generally observed

in the laboratory is largely explained only by differences in the elevation of the probability

weighting function among individuals.
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Our results seem determinant in at least two aspects. First, it demonstrates all the dangers

of overfitting in estimating risk preferences, since spurious results, such as the existence of

heterogeneity in the utility function, may only correspond to pure noise. The issue of overfitting

in the estimation of risk preferences has only been considered in a handful of papers in decision

sciences and, yet, according to our findings, should no longer be ignored. Second, our findings

contradict the idea that the expected utility model could be considered as a relevant approximation

of true risk preferences. Given our results, when interpreting the RDU model, the PWF should

not be regarded simply as an auxiliary feature that increases the goodness-of-fit of the standard

theory, but can be considered as the key element making individuals more or less risk-averse.
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Kőszegi, B., Rabin, M. 2006. A model of reference-dependent preferences. Quarterly Journal of

Economics. 121(4):1133–1165.

Kruschke, J. 2015. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic

Press.

Lantz, B. 2015. Machine Learning with R: Expert techniques for predictive modeling to solve all your

data analysis problems. Packt Publishing Ltd.

Loomes, G., Sugden, R. 1982. Regret theory: An alternative theory of rational choice under

uncertainty. The Economic Journal. 92(368):805–824.

Loomes, G., Moffatt, P. G., Sugden, R. 2002. A microeconometric test of alternative stochastic

theories of risky choice. Journal of Risk and Uncertainty. 24(2):103–130.

Moffatt, P. G. 2015. Experimetrics: Econometrics for experimental economics. Macmillan

International Higher Education.

Moffatt, P. G., Peters, S. A. 2001. Testing for the presence of a tremble in economic experiments.

Experimental Economics. 4(3):221–228.

Murphy, R. O., ten Brincke, R. H. 2018. Hierarchical maximum likelihood parameter estimation

for cumulative prospect theory: Improving the reliability of individual risk parameter

estimates. Management Science. 64(1):308–326.

34



Nilsson, H., Rieskamp, J., Wagenmakers, E. J. 2011. Hierarchical Bayesian parameter

estimation for cumulative prospect theory. Journal of Mathematical Psychology. 55(1):84–93.

Peysakhovich, A., Naecker, J. 2017. Using methods from machine learning to evaluate

behavioral models of choice under risk and ambiguity. Journal of Economic Behavior &

Organization. 133:373–384.

Prelec, D. 1998. The probability weighting function. Econometrica. 66(3):497–527.

Quiggin, J. 1982. A theory of anticipated utility. Journal of Economic Behavior & Organization.

3(4):323–343.

Richard, T., Baudin, V. 2020. Asymmetric noise and systematic biases: A new look at the Trade-

Off method. Economics Letters. 191:109132.

Saha, A. 1993. Expo-power utility: a ‘flexible’ form for absolute and relative risk aversion.

American Journal of Agricultural Economics. 75(4):905–913.

Scheibehenne, B., Pachur, T. 2015. Using Bayesian hierarchical parameter estimation to assess

the generalizability of cognitive models of choice. Psychonomic Bulletin & Review. 22(2):391–

407.

Sokolova, M., Japkowicz, N., Szpakowicz, S. 2006. Beyond accuracy, F-score and ROC: a

family of discriminant measures for performance evaluation. In Australasian joint conference

on artificial intelligence. Springer, Berlin, Heidelberg. pp. 1015–1021.

Stott, H. P. 2006. Cumulative prospect theory’s functional menagerie. Journal of Risk and

Uncertainty. 32(2):101–130.

Tanaka, T., Camerer, C. F., Nguyen, Q. 2010. Risk and time preferences: Linking experimental

and household survey data from Vietnam. American Economic Review. 100(1):557–71.

Toubia, O., Johnson, E., Evgeniou, T., Delquié, P. 2013. Dynamic experiments for estimating

preferences: An adaptive method of eliciting time and risk parameters. Management Science.

59(3):613–640.

Tversky, A., Kahneman, D. 1992. Advances in prospect theory: Cumulative representation of

uncertainty. Journal of Risk and Uncertainty. 5(4):297–323.

35



Varian, H. R. 2014. Big data: New tricks for econometrics. Journal of Economic Perspectives.

28(2):3–28.

Von Gaudecker, H. M., Van Soest, A., Wengstrom, E. 2011. Heterogeneity in risky choice

behavior in a broad population. American Economic Review. 101(2):664–94.

Wakker, P. P. 2010. Prospect theory: For risk and ambiguity. Cambridge university press.

Wakker, P., Deneffe, D. 1996. Eliciting von Neumann-Morgenstern utilities when probabilities

are distorted or unknown. Management science. 42(8):1131–1150.

Wilcox, N. T. 2008. Stochastic models for binary discrete choice under risk: A critical primer

and econometric comparison. Risk aversion in experiments. 12:197–292.

Wilcox, N. T. 2011. ‘Stochastically more risk averse:’A contextual theory of stochastic discrete

choice under risk. Journal of Econometrics. 162(1):89–104.

Yaari, M. E. 1987. The dual theory of choice under risk. Econometrica. 55(1):95–115.

36



Appendices

A Detailed results: predictive power

A.1 Parametric Study

A.1.1 Accuracy rate

Table (4) Accuracy rate, Parametric Study

Models 95 % Confidence interval
RDU 0.71 0.69 - 0.73
RDU Unique Utility 0.71 0.69 - 0.73
RDU Unique Utility and Sensi. 0.70 0.68 - 0.72
RDU Unique Utility and Eleva. 0.67 0.65 - 0.69
RDU Unique PWF 0.66 0.64 - 0.68
EU 0.63 0.61 - 0.65
Dual 0.70 0.68 - 0.72

A.1.2 M.C.C.

Table (5) M.C.C., Parametric Study

Models 95 % Confidence interval
RDU 0.37 0.33 - 0.41
RDU Unique Utility 0.37 0.33 - 0.40
RDU Unique Utility and Sensi. 0.34 0.30 - 0.38
RDU Unique Utility and Eleva. 0.27 0.22 - 0.31
RDU Unique PWF 0.25 0.20 - 0.29
EU 0.19 0.15 - 0.23
Dual 0.35 0.31 - 0.39
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A.1.3 Kappa

Table (6) Cohen’s Kappas, Parametric Study

Models 95 % Confidence interval
RDU 0.36 0.32 - 0.40
RDU Unique Utility 0.36 0.31 - 0.40
RDU Unique Utility and Sensi. 0.33 0.28 - 0.37
RDU Unique Utility and Eleva. 0.24 0.19 - 0.29
RDU Unique PWF 0.22 0.17 - 0.27
EU 0.19 0.14 - 0.24
Dual 0.34 0.30 - 0.39

A.1.4 Individual Kappas

Table (7) Individual Kappas Distribution, Parametric Study

Models Min 25 % 50 % 75 % Max
RDU -0.32 0.07 0.29 0.47 1.00
RDU Unique Utility -0.32 0.06 0.29 0.49 1.00
RDU Unique Utility and Sensi. -0.35 0.00 0.29 0.47 1.00
RDU Unique Utility and Eleva. -0.43 0.00 0.19 0.39 1.00
RDU Unique PWF -0.47 0.00 0.14 0.36 1.00
EU -0.40 -0.11 0.11 0.28 0.81
Dual -0.24 0.00 0.28 0.47 1.00

Note: This table introduces the minimum, the maximum, as well as the 25%, 50%, and 75% quantiles of the

distribution of individual kappas for each model.

38



A.2 Non-Parametric Study

A.2.1 Accuracy rate

Table (8) Accuracy rate, Non-Parametric Study

Models 95 % Confidence interval
RDU 0.69 0.67 - 0.71
RDU Unique Utility 0.70 0.68 - 0.72
RDU Unique PWF 0.66 0.64 - 0.68
EU 0.63 0.61 - 0.65
Dual 0.69 0.67 - 0.71

A.2.2 Kappa

Table (9) Cohen’s Kappas, Non-Parametric Study

Models 95 % Confidence interval
RDU 0.32 0.28 - 0.36
RDU Unique Utility 0.34 0.31 - 0.38
RDU Unique PWF 0.20 0.16 - 0.24
EU 0.20 0.16 - 0.24
Dual 0.33 0.29 - 0.36
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A.2.3 M.C.C.

Table (10) M.C.C., Non-Parametric Study

Models 95 % Confidence interval
RDU 0.32 0.28 - 0.36
RDU Unique Utility 0.35 0.31 - 0.38
RDU Unique PWF 0.22 0.17 - 0.26
EU 0.20 0.16 - 0.25
Dual 0.33 0.29 - 0.37

A.2.4 Individual Kappas

Table (11) Individual Kappas Distribution, Non-Parametric Study

Indicators Min 25 % 50 % 75 % Max
RDU -0.41 -0.01 0.18 0.40 1.00
RDU Unique Utility -0.32 0.00 0.24 0.44 1.00
RDU Unique PWF -0.43 -0.09 0.00 0.30 1.00
Dual -0.38 -0.05 0.14 0.33 0.87
EU -0.36 0.00 0.19 0.42 1.00

Note: This table introduces the minimum, the maximum, as well as the 25%, 50%, and 75% quantiles of the

distribution of individual kappas for each model.
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B Detailed results : estimates

B.1 Parametric Study

B.1.1 Baseline RDU model

Table (12) Baseline RDU model, Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
log(r) (Individual point estimates distri.) -1.8 -1.39 -1.16 -0.97 -0.14
log(β) (Individual point estimates distri.) -1.38 -0.40 0.20 0.61 1.41
log(γ) (Individual point estimates distri.) -1.75 -1.07 -0.62 -0.05 0.71
log(ξ) (Individual point estimates distri.) -4.31 -3.86 -3.50 -3.29 -2.87
ω (Posterior distribution) 0.06 0.08 0.10 0.11 0.13
DIC 10773.26

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameter that is common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the complete dataset (with no train set/test set distinction).

B.1.2 Unique utility RDU model
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Table (13) Unique utility RDU model, Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
log(r) (Posterior distribution) -1.22 -1.02 -0.94 -0.86 -0.73
log(β) (Individual point estimates distri.) -1.78 -0.38 0.19 0.58 1.44
log(γ) (Individual point estimates distri.) -1.72 -1.06 -0.61 -0.03 0.78
log(ξ) (Individual point estimates distri.) -4.28 -3.76 -3.31 -2.99 -2.46
ω (Posterior distribution) 0.06 0.08 0.09 0.1 0.13
DIC 10683.56

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameters that are common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the complete dataset (with no train set/test set distinction).

B.1.3 Unique PWF RDU model

Table (14) Unique PWF RDU model, Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
log(r) (Individual point estimates distri.) -3.65 -2.61 -1.98 -1.43 1.60
log(β) (Posterior distribution) 0.05 0.1 0.13 0.16 0.22
log(γ) (Posterior distribution) -1.38 -1.29 -1.23 -1.18 -1.09
log(ξ) (Individual point estimates distri.) -5.79 -4.16 -3.34 -2.64 -1.14
ω (Posterior distribution) 0.09 0.11 0.13 0.14 0.18
DIC 11350.71

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameters that are common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the complete dataset (with no train set/test set distinction).

B.1.4 Unique utility and unique sensitivity RDU model
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Table (15) Unique utility and unique sensitivity RDU model, Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
log(r) (Posterior distribution) -1.13 -0.94 -0.85 -0.77 -0.63
log(β) (Individual point estimates distri.) -2.76 0.03 1.50 3.46 5.28
log(γ) (Posterior distribution) 0.03 0.09 0.13 0.17 0.24
log(ξ) (Individual point estimates distri.) -4.10 -3.36 -2.86 -2.20 -1.74
ω (Posterior distribution) 0.07 0.09 0.10 0.12 0.14
DIC 10876.92

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameters that are common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the complete dataset (with no train set/test set distinction).

B.1.5 Unique utility and unique elevation RDU model

Table (16) Unique utility and unique elevation RDU model, Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
log(r) (Posterior distribution) -1.77 -1.4 -1.25 -1.12 -0.92
log(β) (Posterior distribution) 0.17 0.25 0.3 0.35 0.5
log(γ) (Individual point estimates distri.) -2.38 -1.34 -0.78 -0.04 1.12
log(ξ) (Individual point estimates distri.) -4.84 -3.70 -2.97 -2.17 -0.81
ω (Posterior distribution) 0.06 0.08 0.10 0.11 0.13
DIC 11195.27

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameters that are common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the complete dataset (with no train set/test set distinction).

B.1.6 Dual model
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Table (17) Dual model, Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
log(β) (Individual point estimates distri.) -1.07 -0.05 0.40 0.86 1.63
log(γ) (Individual point estimates distri.) -1.69 -1.15 -0.65 -0.14 0.54
log(ξ) (Individual point estimates distri.) -4.16 -3.5 -3.12 -2.69 -2.21
ω (Posterior distribution) 0.07 0.09 0.11 0.12 0.15
DIC 10856.63

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameter that is common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the complete dataset (with no train set/test set distinction).

B.1.7 EU model

Table (18) EU model, Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
log(r) (Individual point estimates distri.) -8.5 -6.85 -5.26 -4.07 2.66
log(ξ) (Individual point estimates distri.) -10.2 -9.04 -8.59 -8.06 -7.7
ω (Posterior distribution) 0.34 0.48 0.51 0.54 0.57
DIC 12687.22

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameter that is common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the complete dataset (with no train set/test set distinction).
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B.2 Non-parametric study

B.2.1 Baseline RDU model

Table (19) Baseline RDU model, Non-Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
u1 (Individual point estimates distri.) 0.15 0.30 0.37 0.42 0.51
u2 (Individual point estimates distri.) 0.26 0.44 0.51 0.57 0.66
u3 (Individual point estimates distri.) 0.35 0.56 0.61 0.66 0.78
u4 (Individual point estimates distri.) 0.41 0.63 0.69 0.75 0.84
u5 (Individual point estimates distri.) 0.55 0.73 0.76 0.82 0.88
u6 (Individual point estimates distri.) 0.69 0.83 0.86 0.89 0.93
u7 (Individual point estimates distri.) 0.92 0.94 0.95 0.96 0.97
w1 (Individual point estimates distri.) 0.03 0.16 0.28 0.48 0.67
w2 (Individual point estimates distri.) 0.06 0.29 0.46 0.59 0.75
w3 (Individual point estimates distri.) 0.12 0.40 0.55 0.68 0.80
w4 (Individual point estimates distri.) 0.18 0.56 0.68 0.79 0.88
w5 (Individual point estimates distri.) 0.30 0.65 0.77 0.85 0.92
w6 (Individual point estimates distri.) 0.40 0.74 0.87 0.92 0.96
w7 (Individual point estimates distri.) 0.47 0.87 0.94 0.97 0.98
log(ξ) (Individual point estimates distri.) -4.67 -3.83 -3.31 -2.82 -2.17
ω (Posterior distribution) 0.10 0.13 0.15 0.16 0.19
DIC 9971.45

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameter that is common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the test set only.
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B.2.2 Unique utility RDU model

Table (20) Unique utility RDU model, Non-Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
u1 (Posterior distribution) 0.26 0.30 0.32 0.34 0.38
u2 (Posterior distribution) 0.40 0.44 0.47 0.49 0.54
u3 (Posterior distribution) 0.50 0.55 0.59 0.61 0.66
u4 (Posterior distribution) 0.56 0.62 0.65 0.68 0.72
u5 (Posterior distribution) 0.65 0.71 0.74 0.77 0.81
u6 (Posterior distribution) 0.75 0.80 0.83 0.86 0.89
u7 (Posterior distribution) 0.84 0.90 0.94 0.97 1.00
w1 (Individual point estimates distri.) 0.03 0.14 0.27 0.44 0.64
w2 (Individual point estimates distri.) 0.06 0.24 0.39 0.53 0.71
w3 (Individual point estimates distri.) 0.11 0.34 0.48 0.60 0.77
w4 (Individual point estimates distri.) 0.15 0.46 0.59 0.69 0.85
w5 (Individual point estimates distri.) 0.28 0.55 0.68 0.78 0.89
w6 (Individual point estimates distri.) 0.32 0.63 0.77 0.88 0.95
w7 (Individual point estimates distri.) 0.41 0.75 0.88 0.94 0.98
log(ξ) (Individual point estimates distri.) -4.09 -3.63 -3.28 -2.97 -2.62
ω (Posterior distribution) 0.06 0.09 0.11 0.13 0.16
DIC 9128.00

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameters that are common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the test set only.
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B.2.3 Unique PWF RDU model

Table (21) Unique PWF RDU model, Non-Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
u1 (Individual point estimates distri.) 0.00 0.19 0.29 0.36 0.49
u2 (Individual point estimates distri.) 0.01 0.35 0.47 0.57 0.69
u3 (Individual point estimates distri.) 0.03 0.51 0.59 0.69 0.87
u4 (Individual point estimates distri.) 0.08 0.62 0.70 0.78 0.91
u5 (Individual point estimates distri.) 0.25 0.74 0.80 0.85 0.94
u6 (Individual point estimates distri.) 0.51 0.87 0.90 0.93 0.97
u7 (Individual point estimates distri.) 0.89 0.95 0.96 0.97 0.99
w1 (Posterior distribution) 0.52 0.59 0.61 0.64 0.68
w2 (Posterior distribution) 0.53 0.58 0.62 0.64 0.69
w3 (Posterior distribution) 0.54 0.60 0.63 0.65 0.70
w4 (Posterior distribution) 0.64 0.70 0.72 0.72 0.78
w5 (Posterior distribution) 0.65 0.71 0.74 0.74 0.79
w6 (Posterior distribution) 0.68 0.73 0.76 0.76 0.81
w7 (Posterior distribution) 0.69 0.74 0.76 0.76 0.82
log(ξ) (Individual point estimates distri.) -5.32 -3.76 -2.38 -1.09 0.26
ω (Posterior distribution) 0.12 0.15 0.17 0.19 0.22
DIC 9665.14

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameters that are common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the test set only.
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B.2.4 Dual model

Table (22) Dual model, Non-Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
w1 (Individual point estimates distri.) 0.08 0.24 0.39 0.55 0.75
w2 (Individual point estimates distri.) 0.14 0.34 0.48 0.63 0.82
w3 (Individual point estimates distri.) 0.21 0.45 0.59 0.71 0.86
w4 (Individual point estimates distri.) 0.26 0.55 0.69 0.81 0.91
w5 (Individual point estimates distri.) 0.39 0.64 0.77 0.86 0.94
w6 (Individual point estimates distri.) 0.43 0.71 0.86 0.93 0.97
w7 (Individual point estimates distri.) 0.50 0.83 0.93 0.97 0.99
log(ξ) (Individual point estimates distri.) -3.80 -3.45 -3.16 -2.90 -2.59
ω (Posterior distribution) 0.06 0.09 0.11 0.14 0.18
DIC 9310.45

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameter that is common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the test set only.
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B.2.5 EU model

Table (23) EU model, Non-Parametric Study

2.5 % 25 % 50 % 75 % 97.5 %
u1 (Individual point estimates distri.) 0.41 0.60 0.66 0.74 0.82
u2 (Individual point estimates distri.) 0.54 0.70 0.77 0.84 0.94
u3 (Individual point estimates distri.) 0.65 0.79 0.84 0.90 0.98
u4 (Individual point estimates distri.) 0.72 0.84 0.89 0.93 0.98
u5 (Individual point estimates distri.) 0.81 0.90 0.93 0.95 0.99
u6 (Individual point estimates distri.) 0.92 0.95 0.96 0.97 0.99
u7 (Individual point estimates distri.) 0.97 0.98 0.98 0.99 1.00
log(ξ) (Individual point estimates distri.) -5.59 -3.74 -3.09 -2.20 -0.94
ω (Posterior distribution) 0.10 0.15 0.17 0.20 0.25
DIC 10514.32

Notes: This table introduces the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the individual point estimates

distribution (for the parameters that are estimated at a subject-level) and of the posterior distribution (for the

parameter that is common to all subjects). The point estimates of the individual parameters corresponds to the

median of the posterior distribution. The DIC corresponds to the Deviance Information Criterion. The estimates

are obtained using the test set only.
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C Robustness to the noise structure

Table (24) Out-of-sample predictive power (additional noise structures)

Robustness Model Constraint Kappa MCC Acc. Median Log-likelihood Vuong test
Check kappa (p-value)
Cont. Utility RDU None 0.33 0.33 0.70 0.21 −1101.93

Unique Utility 0.35 0.35 0.70 0.19 −1092.48 0.53
Unique PWF 0.21 0.23 0.66 0.00 −1132.67 0.07

Logit RDU None 0.32 0.32 0.69 0.14 −1120.86
Unique Utility 0.33 0.33 0.70 0.16 −1103.86 0.22
Unique PWF 0.19 0.21 0.65 0.00 −1159.9 0.05

Notes: This table summarizes the indicators of predictive power obtained with different noise structure, a

contextual utility model and a Logit model respectively. The Vuong test is realized in comparison with a baseline

RDU model with the same noise structure.

D Robustness to additional specifications

Table (25) Out-of-sample predictive power, RDU unique PWF models

Robustness Check Change Kappa MCC Acc. Median Log-likelihood
Specification kappa
Prior Gamma 0.19 0.22 0.66 0.00 −1132.56

Truncated Normal 0.16 0.18 0.65 0.00 −1161.69
Utility function Saha (1993) 0.17 0.20 0.66 0.00 −1157.37

Prelec (1998) 0.18 0.20 0.65 0.00 −1168.74

Notes: This table summarizes the indicators of predictive power obtained with additional

parametric assumptions for the model with a unique probability weighting function. We

changed the specification first of the prior on the r parameter and then, the parametric form

given to the utility function.
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E Comments on Baillon et al. (2020)

This section aims to discuss the results from Baillon et al. (2020), and the relevance for

us to adopt a simple Rank-Dependent Utility (RDU) model to describe the data rather than

reference-dependent behavior models.

As already mentioned in our paper, Baillon et al. (2020) elicit a Prospect Theory model with

heterogeneous reference points (rp from now). Then, they classically suppose the prospect

theory’s value function :

v(x) =


(x − rp)r if x < rp

−λ(rp − x)r otherwise,
(19)

with λ the classical parameter of loss aversion, a r a positive parameter that determines the

curvature of the value function. Subjects are supposed to follow a particular rule to fix their

reference point, with :

• Rule 1 : the status quo, with a reference point at 0 (implicitly an RDU model, Quiggin,

1982).

• Rule 2 : the "MaxMin" rule, where the reference point is the maximum of the minimal

outcomes of the two lotteries.

• Rule 3 : the "MinMax" rule, where the reference point is the minimum of the maximal

outcomes of the two lotteries.

• Rule 4 : the "X at P max" rule, where the reference point is the outcome that has the

highest probability in the two lotteries.

• Rule 5 : the EV rule, where the Expected Values of the lotteries are also their reference

points.

• Rule 6 : the KR rule, where the reference point is the lottery itself, using a stochastic

reference point (Kőszegi and Rabin, 2006)

The prospect theory’s value function is then added to the Expected Value of the lottery to

obtain the total utility — that depends, consequently, on the sum of a "rational part" and of a

reference-dependent part.
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We tested the robustness of the results from Baillon et al. (2020) by comparing the goodness-

of-fit of their mixture model with our simple RDU framework. To have comparable results, we

changed the noise structure of the Baillon et al. (2020) model and we supposed a logit model

with a tremble parameter instead of the simpler logit model chosen in the original paper (as we

can see below, this noise specification tends to better fit the data, since the tremble parameter

we obtain is far from 0). We also choose a more general PWF parametric form, with the version

from Prelec (1998) with two parameters presented above instead of the version with only one

parameter used in the original paper, at least concerning the main specification.

According to our results, the posterior distribution indicates that half of the individuals

follow the RDU model, and this model seems overwhelmingly dominant in the population.

Moreover, we see that the goodness-of-fit of an RDU model, as measured by the deviance

information criterion, is higher for an RDU model than for the mixture model Baillon et al.

(2020) propose. While this short comment is not sufficient to conclude to the absence of

reference-dependent behaviors in this context, the RDU hypothesis we use seems to be at least

a relevant approximation of the true decision model adopted by most subjects.

Table (26) Results from the mixture model and from the RDU model

Mixture Model RDU
r (Median of the point estimates) 0.51 0.31
λ (Median of the point estimates) 1.90 -
β (Median of the point estimates) 0.82 1.22
γ (Median of the point estimates) 0.22 0.54
ξ (Median of the point estimates) 14.35 32.96
ω (Median of the posterior distribution) 0.08 0.10
p(Model = 1) (Median of the posterior distribution) 0.49 -
p(Model = 2) (Median of the posterior distribution) 0.30 -
p(Model = 3) (Median of the posterior distribution) 0.03 -
p(Model = 4) (Median of the posterior distribution) 0.03 -
p(Model = 5) (Median of the posterior distribution) 0.05 -
p(Model = 6) (Median of the posterior distribution) 0.10 -

DIC 10877.49 10773.26
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F Details of the MCMC

We use JAGS in R to compute our estimation of the Bayesian models. As one could expect,

the models that exhibit poor predictive power may also give convergence issues. This is why

we adopt different numbers of iterations in the Gibbs sampling used in JAGS depending on

the model under consideration.

• Parametric studies (main paper):

– Baseline RDU model, RDU with a unique utility function model, RDU with a unique

utility function and a unique sensitivity parameter model, and Dual model: 3 chains,

6000 iterations with 2000 iterations in burn-in and one iteration out of four kept in

the final sample.

– RDU with a unique PWF model, RDU with a unique utility function and a unique

elevation parameter model, EU model: 3 chains, 30000 iterations, with 2000 iterations

in burn-in and one iteration out of tweenty kept in the final sample.

• Parametric studies (robustness checks):

– Baseline RDU model, RDU with a unique utility function model: 3 chains, 6000

iterations with 2000 iterations in burn-in, and on iteration out of four kept in the

final sample.

– RDU with a unique PWF model: 3 chains, 24000 iterations, with 2000 iterations in

burn-in and one iteration out of sixteen kept in the final sample.

• Non-parametric:

– Baseline RDU model, RDU with a unique utility function model, Dual model: 3

chains, 8000 iterations with 2000 iterations in burn-in and one iteration out of six

kept in the final sample.

– RDU with a unique PWF model and EU model: 3 chains, 16000 iterations, with 4000

iterations in burn-in and one iteration out of twelve kept in the final sample.

• Mixture models (the Baseline RDU model against RDU with a unique utility function

model and the replication of Baillon et al., 2020): 5 chains, 5000 iterations with 2000

iterations in burn-in and one iteration out of three kept in the final sample.
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At the end of the MCMC process, we verified that the Gelman-Rubin statistic of individual

estimates is under or close to 1.20 for all the subjects.
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G Examples of non-parametric curves

(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

(g) Subject 7 (h) Subject 8 (i) Subject 9

(j) Subject 10 (k) Subject 11 (l) Subject 12

Figure (6) Utility functions (1)
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(a) Subject 13 (b) Subject 14 (c) Subject 15

(d) Subject 16 (e) Subject 17 (f) Subject 18

(g) Subject 19 (h) Subject 20 (i) Subject 21

(j) Subject 22 (k) Subject 23 (l) Subject 24

Figure (7) Utility functions (2)
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(a) Subject 25 (b) Subject 26 (c) Subject 27

(d) Subject 28 (e) Subject 29 (f) Subject 30

(g) Subject 31 (h) Subject 32 (i) Subject 33

(j) Subject 34 (k) Subject 35 (l) Subject 36

Figure (8) Utility functions (3)

57



(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

(g) Subject 7 (h) Subject 8 (i) Subject 9

(j) Subject 10 (k) Subject 11 (l) Subject 12

Figure (9) Probability Weighting functions (1)
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(a) Subject 13 (b) Subject 14 (c) Subject 15

(d) Subject 16 (e) Subject 17 (f) Subject 18

(g) Subject 19 (h) Subject 20 (i) Subject 21

(j) Subject 22 (k) Subject 23 (l) Subject 24

Figure (10) Probability Weighting functions
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(a) Subject 25 (b) Subject 26 (c) Subject 27

(d) Subject 28 (e) Subject 29 (f) Subject 30

(g) Subject 31 (h) Subject 32 (i) Subject 33

(j) Subject 34 (k) Subject 35 (l) Subject 36

Figure (11) Probability Weighting functions (3)
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