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Phillips curves between countries rather than by different national economic contexts.
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I. Introduction

Our objective in this paper is to document the time-varying divergence in the predictive

inflation distributions across euro area countries and explore their macroeconomic origins.

Fluctuations in the dispersion of the conditional mean of inflation between countries over

time are a well-known phenomenon. Average inflation differentials between countries show a

clear cyclical pattern, rising sharply in economic downturns and falling in booms, as shown

in Figure 1. The literature has been widely devoted to studying the key drivers behind

these cross-country differences. By contrast, the study of the divergences in the tails of

the inflation distribution remains completely unexplored. Yet, the dispersion of inflation in

the euro area (both headline and core) appears to be more pronounced in the tails of the

distribution than in the middle, as shown in Table I. The (unconditional) standard deviation

across countries of inflation (both headline and core) tends to be two to three times higher in

the 10th and 90th quantiles than that in the median. In this paper, we aim at providing a more

complete picture of inflation differentials across euro area countries by delivering measures of

inflation dispersion over time associated to the different quantiles of the predictive inflation

distributions, and at identifying their main drivers.

Our approach builds on the concept of inflation-at-risk developed by Andrade et al. (2014),

Banerjee et al. (2020), and López-Salido and Loria (2022), which is itself highly related to

that of Growth-at-Risk developed by Adrian, Boyarchenko, and Giannone (2019).1 Inflation-

at-risk approach aims at forecasting shifts in the tails of inflation distribution. López-Salido

and Loria (2022) provide an in-depth analysis of inflation-at-risk in the euro area and the

U.S. grounded on a quantile Phillips curve. Here, we are not interested in the inflation risk for

one country per see, but in the dispersion of these inflation risks between euro area countries.

The literature on inflation-at-risk is relatively silent when it comes to the analysis of

this risk of inflation dispersion. However, as for inflation itself, it is critical for the policy

maker to know what type of tail risks (upside or downside) are causing the dispersion of

inflation especially in a monetary union. The conduct of a single monetary policy, with a

common inflation target, is indeed more difficult if countries have diverging inflation rates.

Countries with high inflation differentials will suffer from inappropriate monetary policy

1See also Plagborg-Møller et al. (2020) and Figueres and Jarociński (2020) for an application to the euro

area.
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Figure 1. Cross-sectional standard deviation of inflation rates in the euro area
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Note: π̄it,t−12 denotes the average over the last 12 months of the monthly inflation rate (core and headline

inflation rates, annualized) for the country i of the euro area (12 countries, fixed composition, Austria,

Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain).

The sample is January 1999 to July 2022. The figure shows the cross-country unweighted standard

deviation of annual inflation rates in the euro area. See Section A in the online appendix for data

description.

decisions with respect to their specific economic context. Inflation dispersion at the bottom

of the inflation distribution exposes diverging economies to the risk of costly deflation due

to nominal downward rigidity while at the top of the distribution, diverging economies are

exposed to the risk of inflationary spirals.

To elaborate our measure of risk of inflation dispersion, we proceed as follows. Firstly,

we estimate a quantile Phillips curve based on López-Salido and Loria (2022) for each euro

area country and not for the euro area as a whole as done by these authors. We can then

compute the predictive inflation distributions by country. Conditional quantiles vary over

time according to the evolution of key economic and financial variables included in the Phillips

curve (namely, past and expected inflation rates, unemployment gap, financial stress, oil

inflation, and supply chain pressures). Secondly, for each date, we compute the standard

deviation across these national quantiles of inflation. By looking at the different quantiles of

the inflation distribution, we can evaluate the cross-country dispersion of the inflation-at-risk

at the bottom of the distribution (i.e. the risk of low inflation or deflation) and at the top



THE RISK OF INFLATION DISPERSION IN THE EURO AREA 4

Table I. Moments of inflation by country

Core HICP HICP

Mean Median 10th 90th Mean Median 10th 90th

Germany 1.19 1.10 0.43 2.06 1.63 1.44 0.33 3.16

France 1.18 1.16 0.53 1.87 1.62 1.50 0.66 2.72

Italy 1.70 1.76 0.68 2.64 1.73 1.75 0.28 3.16

Spain 1.65 1.70 0.24 3.01 2.16 2.00 -0.12 4.67

Netherlands 1.63 1.41 0.60 2.91 2.04 1.75 0.44 3.98

Finland 1.37 1.30 0.47 2.37 1.68 1.48 0.28 3.31

Ireland 1.46 1.43 -0.89 3.86 1.73 1.61 -0.87 4.53

Austria 1.76 1.69 1.07 2.56 1.94 1.78 0.73 3.36

Portugal 1.57 1.45 -0.03 3.36 1.87 1.73 -0.12 4.06

Belgium 1.77 1.68 1.19 2.45 1.97 1.92 0.61 3.43

Luxembourg 1.74 1.70 1.12 2.41 2.45 2.32 0.67 4.43

Greece 1.33 1.47 -1.22 3.70 1.95 1.79 -0.87 4.99

Mean 1.53 1.49 0.35 2.77 1.90 1.75 0.17 3.82

Std. Dev. 0.22 0.22 0.75 0.62 0.25 0.25 0.56 0.72

Note: Mean, median, 10th and 90th quantiles for each country of the euro area (12 countries, fixed com-

position: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands,

Portugal, Spain). The sample is January 1999 to July 2022. The last two rows are the unweighted means

and the standard deviations of moments across countries. See Section A in the online appendix for data

description.

of the distribution (i.e. the risk of excessive inflation). Third, we investigate the drivers of

inflation dispersion by considering various scenarios regarding the national economic series

and the structure of the Phillips curve.

We apply this framework to a euro area made from its first 12 member countries (Aus-

tria, Belgium, Finland, France, Germany, Greece2, Ireland, Italy, Luxembourg, Netherlands,

Portugal, Spain). We restrict ourselves to this euro area with fixed composition to avoid the

dispersion of inflation rates that would result from changes in the composition of the euro

2We include Greece in our sample even though it officially adopted the euro in 2001, two years after its

creation.
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area due to the more recent entry of countries. The analysis is done for the period starting

in January 1999, at the creation of the euro, to July 2022. Our main results are as follows.

(1) There has been a shift in the nature of inflation dispersion in the euro area. While

the dispersion of inflation rates mainly concerns the top of the distribution during

the first decade of the euro area, it shifted to the bottom of the distribution during

the second decade of the euro area.

(2) The dispersion of inflation-at-risk reaches record levels in the wake of the COVID

crisis, a period marked by international tensions on energy prices and supply chains.

(3) The main determinant of this dispersion at the bottom of the distribution was the

evolution of financial stress associated with the financial and sovereign debt crisis.

(4) In the wake of the COVID crisis, value chain pressures drove the dispersion of inflation

at the top of the distribution.

(5) Overall, the dispersion of inflation rates is largely caused by heterogeneous Phillips

curves between countries rather than by different national economic contexts.

Relation to other studies. Our paper contributes to the literature on inflation dynam-

ics in the euro area context. We contribute to the literature on inflation dispersion, which

has been a long-standing issue in the European Monetary Union. Inflation dispersion was

an important issue in defining the ECB’s strategy at its inception, see Issing et al. (2003),

as well as in its recent strategy review in 2021 as discussed in depth by Consolo et al. (2021)

and Reichlin et al. (2021). It is also worth mentioning that inflation differentials per see may

not be detrimental to the monetary union if they reflect the process of nominal convergence

and economic development catch up. That being said, as highlighted by the ECB (2005),

it is necessary to assess the underlying causes of inflation differentials observed at the early

stage of the euro area to formulate the most appropriate monetary policy response.3 Inflation

differentials in the euro area has also been discussed in the academic literature. Angeloni

and Ehrmann (2007) investigate the sources of euro area inflation differentials from 1998 to

2003. As a result, they identify that demand shocks have been the main source of inflation

differentials in the early years of the EMU, followed by cost-push shocks and exchange rate

3Cœuré (2019) underlines how the ECB has always found a way to deal with the heterogeneity that could

have impaired the transmission of monetary policy across euro area countries.
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shocks. Beck, Hubrich, and Marcellino (2009) decompose regional inflation rates into a com-

mon area-wide, a country-specific and an idiosyncratic regional component. They warn of

the potential high welfare costs that may represents inflation differentials fueled by national

economic distortions. Estrada, Gaĺı, and López-Salido (2013) explore the role of EMU in

inflation convergence/divergence among euro area countries. Despite persistent inflation dif-

ferentials in the euro area, they do find any critical role for the EMU in inflation convergence

in the euro area. Haan (2010) offers a survey of this abundant literature subsequent to the

creation of the euro area. We revisit this literature by providing a more complete picture

of inflation differentials across euro area countries through measures of inflation dispersion

associated to the different quantiles of the predictive inflation distributions.

We also contribute to the literature on the estimation of the Phillips curve. Since recent

debates have focused on the death (and the revival) of the Phillips curve, and especially in

the U.S. (see Blanchard, Cerutti, and Summers (2015), Coibion and Gorodnichenko (2015),

Coibion, Gorodnichenko, and Ulate (2019), Del Negro et al. (2020) and Hazell et al. (2022),

among others), little recent evidence have been put forward regarding the Phillips curve in the

euro area. Importantly, and in line with our paper, Ball and Mazumder (2021) focus on an

estimated Phillips curve using euro area core inflation. Their results suggest a non-negligible

role of inflation expectations and output gap in driving core inflation fluctuations in the euro

area. Eser et al. (2020) give a broad picture of the implication of the Phillips curve analysis in

the euro area for the conduct of ECB’s monetary policy. The article of this literature that is

closest to ours is López-Salido and Loria (2022) who bring to this Phillips curve literature the

quantile analysis to highlight the role of financial conditions in the downside risk to inflation.

Our contribution to this literature is to elaborate cross-country measures of risk dispersion.

Using national data of euro area members, we show that there are contrasting responses to

economic and financial variables between the inflation tails and median.

The rest of the paper is organized as follows. Section II describes the empirical strategy

to estimate the inflation-at-risk by country and then compute measures of inflation-at-risk

dispersion. Section III examines the evolution of the risk of inflation dispersion in the euro

area. Section IV discusses the drivers of inflation dispersion. Section V conducts robustness

checks by performing a Markov-switching approach. Section VI concludes.
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II. Empirical Strategy

In the existing literature, the study of the determinants of cross-country dispersion of

the conditional mean of inflation has been an important step to assess the relevance of

regional divergence within the euro area for economic policies and the single monetary policy.

To provide a more complete picture, we examine the entire inflation distribution, with a

particular focus on the response of the tails of the predictive inflation distribution to economic

and financial developments.

This section presents the general methodology employed in this paper. Section II.1 dis-

cusses the baseline statistical model in which conditional inflation quantiles are expressed as

a function of economic and financial conditions for each country. By doing so, we are able

to study the reaction of each quantile of the distribution of future inflation as a function

of the state of the economy, with a particular focus on lower and higher quantiles. Section

II.2 shows how to use the quantiles to approximate the entire inflation distribution using a

flexible yet parametric specification. This allows us to capture the first four moments and to

show probability density functions. Finally, Section II.3 describes our different measures of

cross-country dispersion of inflation risks.

We use augmented quantile Phillips curve models along the lines of López-Salido and

Loria (2022) to examine the effects of different factors on inflation differentials across euro

area countries. That is, we extend the model by incorporating a measure of global supply

chain pressure to take into account supply chain disruptions that have harmed the global

economy since the start of the COVID-19 pandemic. Many commentators have perceived

such disruptions as having been a key driver of the rise and fall of inflation over the recent

period. Once our augmented model is estimated for each country, we are able to deliver

measures of cross-country inflation dispersion over time associated to the different quantiles

of inflation distribution. By doing so, we test the role of different risk factors on the inflation

differentials of mean versus the tail risks of the inflation distributions.

II.1. Phillips Curve Quantile Regressions. We rely on quantile regression models for

studying the determinants of cross-country dispersion of the entire distribution of inflation.

Let us denote by π̄it+1,t+h the annualized average growth rate of core Harmonized Index
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of Consumer Prices (HICP) between t + 1 and t + h for country i, and by xit a 1 × k-

dimensional vector containing the conditioning variables for country i, including a constant.

Our benchmark for the the horizon is h = 12, that is the average inflation over the next year.

Following López-Salido and Loria (2022), we consider a linear model for the conditional

inflation quantiles whose predicted value:

Q̂τ (π̄
i
t+1,t+h|xit) = xitβ̂

i
τ , (1)

is a consistent linear estimator of the quantile function of π̄it+1,t+h conditional on xit; where

τ ∈ (0, 1), β̂iτ is a k × 1-dimensional vector of estimated quantile-specific parameters.

Our model for conditional inflation quantile augments the Phillips curve model used in the

literature as follows:

Q̂τ (π̄
i
t+1,t+h|xit) = µ̂iτ +

(
1− λ̂iτ

)
π∗,it−1 + λ̂iτπ

LTE,i + θ̂iτ
(
uit − u

∗,i
t

)
+

γ̂iτ
(
πo,∗t − π

∗,i
t

)
+ δ̂iτf

i
t + φ̂iτsct, (2)

where all variables are monthly time series covering January 1999 through July 2022. Data

sources are presented in Appendix A.

The variables π∗,it−1 and πLTE,it represent average inflation over the previous twelve months

and a measure of long-term inflation expectations, respectively. The relative importance

of both variables is determined by the parameter λiτ . We impose (1 − λiτ ) + λiτ = 1, 0 ≤

(1−λiτ ) ≤ 1 and 0 ≤ λiτ ≤ 1, as in Blanchard, Cerutti, and Summers (2015) and López-Salido

and Loria (2022)4, using the inequality constrained quantile regression method developed by

Koenker and Ng (2005). We use six- to ten-year-ahead inflation expectations from Consensus

Economics as long-term inflation expectation series.

Our second risk factor is the unemployment gap measured as the difference between the un-

employment rate uit and the natural rate of unemployment u∗,it , which is obtained by applying

the HP filter to the unemployment rate with the smoothing parameter equal to 14,400. The

parameter θiτ captures the slope of the Phillips curve at various inflation quantiles. Following

Blanchard, Cerutti, and Summers (2015), we impose θiτ ≤ 0.

The third risk factor πo,∗t − π∗,it represents variations in relative oil price, where πo,∗t is

the average inflation over the previous twelve months of crude oil price. This allows to

4Hazell et al. (2022) impose λ = 1 to estimate U.S. regional Phillips curve.
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capture the pass-through of oil prices into core inflation measures.5 The literature provides

mixed evidence of the role of energy price and import prices as a key inflation determinant.

For instance, Kilian and Zhou (2021) find that gasoline prices do not explain the improved

fit of the Phillips curve augmented by household inflation expectations during the years

that followed the Great Recession. On the other hand, Matheson and Stavrev (2013) find

an increasing importance of import-price in explaining inflation fluctuations, while Salisu,

Ademuyiwa, and Isah (2018) point a better forecast performance when including oil prices

into the Phillips curve. Based on an open-economy New Keynesian framework applied to

U.K. data, Batini, Jackson, and Nickell (2005) provide further evidence of the benefits of

augmenting the Phillips curve with oil price to fit the data. Our approach captures the

effects of oil prices not only on the conditional mean of inflation, but on the entire inflation

distribution. Cross-quantile and cross-country variations in the parameters γiτ in Equation

(2) capture its effects. Here again, we follow Blanchard, Cerutti, and Summers (2015) and

impose γiτ ≥ 0.6

The fourth risk factor f it represents financial conditions. The literature has documented

firms financing conditions also helps to explain inflation dynamics. Notable examples include

Del Negro, Giannoni, and Schorfheide (2015), Christiano, Eichenbaum, and Trabandt (2015)

and Gilchrist et al. (2017). More importantly, López-Salido and Loria (2022) extend the

analysis to consider the effect of financial conditions on the inflation distribution, with a

particular focus on downside risks to inflation. Following these authors, we approximate f it

by the Composite Indicator of Systemic Stress (CISS) developed by Kremer, Lo Duca, and

Holló (2012), except for Luxembourg for which we use the Country-Level Index of Financial

Stress (CLIFS) proposed by Peltonen, Klaus, and Duprey (2015). The CISS is a weekly

index maintained by the ECB. It includes 15 raw series, mainly market-based financial stress

measures that are split equally into five categories: financial intermediaries, money markets,

equity markets, bond markets and foreign exchange markets. The CLIFS follows the approach

of the CISS, but with slightly different market segments. The parameter associated with

5We also consider commodity and energy prices instead of oil price using the above-described specification

of the augmented quantile Phillips curve. The results are robust to the choice of the series and are not

reported here.
6Blanchard, Cerutti, and Summers (2015) consider import-price inflation in their estimated Phillips curve,

that is proxied by oil price inflation at a monthly frequency in López-Salido and Loria (2022).
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financial conditions in our empirical specification of the Phillips curve is δiτ . This coefficient

is left unconstrained in that case, since no consensus has been reached in the literature

regarding the effect of financial conditions on the overall inflation distribution.

Finally, the last risk factor we consider is related to global supply chain pressures. Since

the beginning of the COVID-19 pandemic, supply chain disruptions have become a major

challenge for the global economy. Moreover, recent research by Peersman (2022) suggests that

international food commodity prices explain a large part of variations in retail prices of food

in the euro area through the food supply chain. We thus allow for supply chain conditions

in Equation (2) to affect differently the conditional inflation quantiles. The variable sct is

the global supply chain pressure index proposed by Benigno et al. (2022) and updated on a

regular basis by the Federal Reserve Bank of New York. This series is built on variables that

are meant to capture factors that put pressure on the global supply chain, both domestically

and internationally. Its effects on the entire distribution of inflation is captured by the cross-

quantile and cross-country parameters φiτ . Following recent studies exploring the role of

supply chain pressures in large post-COVID inflation fluctuations (see for instance Amiti,

Heise, and Wang, 2021 and Di Giovanni et al., 2022), we impose φiτ ≥ 0.

II.2. The Conditional Inflation Distribution. We generally report the direct estimates

from the quantile regressions for the 10th, the 50th, and the 90th percentiles. We also map

the quantile regression estimates into a skewed t-distribution along the lines of Adrian, Bo-

yarchenko, and Giannone (2019) to recover and show a probability density function. The

skewed t-distribution was developed by Azzalini and Capitanio (2003) and has the following

form:

f(π̄it+1,t+h|xit, µit, σit, ηit, κit) =
2

σit
t(zit,t+h;κ

i
t)T

(
ηitz

i
t,t+h

√
κit + 1

κit + (zit,t+h)
2
;κit + 1

)
(3)

where zit,t+h =
π̄i
t+1,t+h(xt)−µit

σi
t

, and t and T represent the density and cumulative distribution

function of the student t-distribution, respectively. The four time-varying parameters of the

distribution pin down the location µit, scale σit, shape ηit, and fatness κit for each country

i, where ηit and κit parameters control the skewness and the kurtosis of the distribution,

respectively.
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For each month and each country, we choose the four parameters (µt, σt, ηt, κt) of the

skewed t-distribution to minimize the squared distance between our estimated quantile func-

tion Q̂τ (π̄
i
t+1,t+h|xit) obtained from the quantile Phillips curve model in Equation (2) and the

quantile function of the skew t-distribution to match the 5th, 25th, 75th and 95th quantiles.

II.3. Measuring Dispersion in Tail Risks. Using our estimated predictive densities, we

can construct informative measures of downside and upside risks. For each county, we define

the concept of Inflation-at-Risk (IaR), the value at risk of future inflation. As made clear

in López-Salido and Loria (2022), estimating the xth quantile of the predictive inflation

distribution is similar to constructing IaR measures at x%. Hence, we refer to IaR to measure

the probability that inflation falls below or above a given value in each country of our sample.

IaR is defined by the quantiles of inflation rates for a given probability α between periods

t and t + h given xit (the information set available at time t for country i). To distinguish

downside and upside risks, we define the downside IaR as

Pr
(
π̄it+1,t+h ≤ −IaR

i
t+h

(
α|xit

))
= α, (4)

where −IaR
i
t+h(α|xit) is the downside IaR for country i in h months in the future at α

probability, typically equal to 10% in our empirical application. The upside IaR is defined

as follows

Pr
(
π̄it+1,t+h ≥ +IaR

i
t+h

(
α|xit

))
= α, (5)

where +IaR
i
t+h(α|xit) is the upside IaR for country i in h months in the future at α probability.

Alternatively, we also rely on expected shortfall and longrise measures, which capture the

severity of an event that occurs in either the left tail (for expected shortfall) or right tail

(for expected longrise) of the predictive distribution. These two measures can be written as

follows:

SF i
t+h =

1

p

∫ p

0

F̂−1
πi
t+1,t+h|x

i
t
(τ |xit) dτ, LRi

t+h =
1

p

∫ 1

1−p
F̂−1
πi
t+1,t+h|x

i
t
(τ |xit) dτ, (6)

for a chosen target probability p, and where F̂−1(•) is the conditional inverse cumulative

distribution of average future inflation over horizon h in country i. To be consistent with our

choice for α = 0.10, we set p = 0.10 in our empirical application.

Once we have calculated risk measures, it is straightfward to obtain a measure of inflation

dispersion across countries. Our preferred measure of dispersion is the cross-country standard
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deviation of risks at horizon h, according to:

σRISKi
t+h

=

√√√√[ 1

N

N∑
i=1

(
RISKi

t+h −RISKt+h

)2

]
(7)

where RISKi
t+h = [−IaR

i
t+h,

+IaR
i
t+h, SF

i
t+h, LR

i
t+h], and RISKt+h is the mean of our risk

measures across countries.

III. The Dispersion of Inflation-at-Risk

This section describes the dispersion of inflation-at-risk for the euro area using the different

metrics defined in Section II. Before focusing on the dispersion across countries, we discuss

some results of Phillips curve estimates for each country of the sample.

III.1. National Phillips Curve Estimates. This section presents the results of the quan-

tile Phillips curve estimates by country. The results are displayed in Tables B1 to B3 in

Appendix B. Each table reports the estimated coefficients of the Equation (2) for each coun-

try for quantiles τ = {0.1, 0.5, 0.9}, respectively. The last two rows of the tables report the

unweighted means and the standard deviations of coefficients across countries.

First of all, the mean and the standard deviation of coefficient λiτ associated to long-term

inflation expectations across countries remain stable over the quantiles. Overall, the weight

of inflation expectations is greater than that of past inflation for all three quantiles. However,

the anchoring is not the same when looking at the weight of inflation expectations country-

by-country. For instance, the coefficient is equal to 1 in Germany in the middle or at the

top of the distribution (50th and 90th quantiles), whereas it is equal to 0.56 at the bottom

of the distribution (10th quantile). Inversely, the coefficient is equal to 1 in France at the

bottom of the distribution but decreases to 0.69 and 0.74 in the middle and at the top of

the distribution, respectively. Globally, inflation is weakly anchored in periphery countries

(Italy, Spain, Ireland, Portugal and Greece), regardless of the quantile.

Focusing on the θiτ coefficient (i.e. the slope of the Phillips curve), the magnitude of the

cross-sectional mean is twice higher for the 50th and 90th quantiles than for the 10th quantile,

though the coefficient is generally not significant from zero. Unemployment seems to affect

inflation much more at the top of the distribution than at the bottom in the euro area, on

average. This result suggests that labor market conditions matter more for upside risks to
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inflation than for downside inflation risks. Such nonlinearities in the relationship between

slack and inflation corroborate those from Gagnon and Collins (2019) in which the Phillips

curve is normally steep but becomes nonlinear only when inflation is low. Once again,

even if the cross-sectional standard deviation does not change significantly from a quantile

to another, the estimated slope of the Phillips curve shows important disparities across

countries within and between quantiles. For instance, the coefficient is strongly negative in

the Netherlands for the 10th as for the 50th quantile, but is null at the top of the distribution.

This highlights important disparities across countries for each quantile.

The cross-sectional mean of the coefficient associated with financial stress, δiτ , is still nega-

tive with a magnitude almost seven times larger for the 10th quantile than in the 90th quantile

(−1.29 against −0.19). This is consistent with the role of tighter financial conditions in the

occurrence of low inflation episodes in the euro area. Our results corroborate a vast literature

maintaining that there is a nonlinear relationship between financial sector and macroeconomy

depending on the state of the economy. Notable examples include He and Krishnamurthy

(2012, 2013) and Brunnermeier and Sannikov (2014) for the theory, and Hubrich and Tetlow

(2015) and Lhuissier (2017) for the empirics. Since this coefficient is the only to be left un-

constrained in the benchmark specification of the augmented Phillips curve model, it shows

important disparities between euro area countries. The cross-sectional standard deviation is

indeed very high for the three quantiles (1.33 for the 90th quantile, 1.63 for the 50th quantile,

and 2.34 for the 10th quantile). However, as for the other estimated coefficients of the model,

the effect of financial stress on inflation varies across countries and over the quantiles. For

instance, the coefficient is positive at the top but negative at the bottom of the distribution

in Austria (0.85 for the 90th quantile and −0.17 for the 10th quantile), whereas it is much

higher (but always negative) in Greece at the bottom of the distribution (−5.84 for the 10th

quantile, −5.48 for the 50th quantile, and −0.04 for the 90th quantile).

Capturing the effect of supply chain pressures on inflation, the φiτ coefficient is similar

from the 10th to the 50th quantile, but the mean and the standard deviation across countries

is interestingly and considerably larger for at the top of the distribution. In line with the

recent period, this suggests that tensions on global supply chain is a key feature of upside

inflation risks across euro area countries.
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Figure 2. Dispersion of conditional quantiles
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Note: Standard deviation of conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) across country i, for quantiles

τ = {0.1; 0.5; 0.9} and forecast horizon h = 12. Panel A shows the standard deviation of the conditional

quantile τ = 0.5. Panel B shows the standard deviation of conditional quantiles τ = 0.1 and τ = 0.9.

Conditional quantiles Q̂τ (π̄it+1,t+h|xit) are simulated using the estimates of Equation (2). Figures D1 and

D2 in Appendix D report the conditional quantiles by country.

Finally, the cross-sectional mean of the γiτ coefficient is slightly higher for the 90th quantile,

suggesting that oil price affects upside risks to inflation more than downside inflation risks.

As a whole, and despite constrained coefficients (except on financial conditions), estimated

national Phillips curve results show important non-linearities across quantiles. Moreover, it

is worth noting that the non-linearities across quantiles are not the same for all countries,

providing grounds for looking at the dispersion of conditional quantiles across euro area

countries.

III.2. Conditional Quantiles. Figure 2 depicts the standard deviation of inflation quantiles

across countries for the one-year forecast horizon. Panel A shows the evolution of the cross-

sectional standard deviation of the 50th quantile over time, i.e. the median of the predictive
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inflation distribution. The figure indicates no clear pattern of the dispersion of the 50th

quantile over the entire sample period. Except for slight increases in troubled times —

especially after the 2008 and the COVID crises, inflation dispersion in the middle of the

distribution across countries displays a relatively stable evolution over time.

This is however not the case when looking at the tails of the dispersion of predictive infla-

tion distribution across countries. Panel B plots the time-varying evolution of the standard

deviation of the 10th and 90th quantiles of inflation distribution across countries. During

the first decade of the euro area, inflation dispersion is clearly higher for the 90th quantile

associated with risk of high inflation. Until 2005, the standard deviation of the 90th quan-

tile is always higher than the standard deviations of the 10th quantile; its highest point is

reached in 2003 during this period. Thereafter, until the Great Recession of 2008-2009, the

inflation dispersion is low regardless of the quantile considered. These findings are consistent

with the fact that the first decade of the euro area is still marked by the process of nominal

convergence of countries that entered the euro area with different initial conditions in terms

of inflation. In particular, some countries, such as Spain or Ireland, had inflation rates above

the other countries.

From the Great Recession of 2008-09 to the COVID crisis, the situation is reversed. The

highest inflation dispersions are for the 10th quantile associated with low inflation risk. The

dispersion of the 90th quantile is overall lower than that of the 10th quantile, except in 2010

when all dispersion measures are high. The key highlight of this period is the spikes reached

by the dispersion of the 10th quantile between 2008 and 2015. They exceed the dispersion

levels observed during the first decade of the euro area. The succession of financial and

sovereign debt crises during this period has clearly fueled the dispersion of inflation in the

euro area through strong differentials in the risk of low inflation between these countries. In

Appendix C, we illustrate this fact by comparing the full predictive inflation distribution of

two polar economies of the euro area (Germany and Greece) before and during the financial

crisis.

III.3. Out-of-Sample Analysis. In this section, we provide out-of-sample evidence of the

results based on the quantile regression. Following Adrian, Boyarchenko, and Giannone

(2019), we use data from January 1999 to December 2009, and we estimate the predictive

distribution of inflation for December 2010 (one-year-ahead). Then, the procedure is repeated
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Figure 3. Dispersion of conditional quantiles for out-of-sample forecasts
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Note: Standard deviation of conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) across country i, for quantiles

τ = {0.1; 0.5; 0.9} and forecast horizon h = 12. Solid lines are for the in-sample estimates: conditional

quantiles Q̂τ (π̄it+1,t+h|xit) are simulated using the estimates of Equation (2) using all the sample of data.

Dotted lines are for the out-of-sample estimates: conditional quantiles Q̂τ (π̄it+1,t+h|xit) are simulated

using a new estimate of Equation (2) for each new date t which is sequentially includes in the sample of

data.

for each month until the end of the sample (i.e. July 2022). At each iteration, the sample is

expanded through the estimation steps described earlier in Section II.

Results for the out-of-sample forecasting exercise are depicted in Figure 3. The figure

shows that the in-sample and out-of-sample estimates of the quantiles are quite similar,

except during the post-2010 euro area sovereign debt crisis regarding the 90th quantile (Panel

C). Out-of-sample predictions also constantly overestimate the peak of the dispersion in the

middle (50th quantile) and the bottom (10th quantile) of the distribution of inflation during

the COVID crisis (Panels A and B). Otherwise, out-of-sample predictions for the selected

quantiles of inflation dispersion are shown to perform well in tracking the evolution of the

full sample estimation of this dispersion. Importantly, they exhibit good performance in

predicting the recent increase in the dispersion of the risk of high inflation driven by spikes

in 50th and 90th conditional quantiles (Panels B and C).

III.4. Expected Shortfall and Longrise. The dispersion of inflation quantiles is an inter-

esting measure but it does not exploit all the information of the predictive inflation distri-

bution. Indeed, as explained earlier, the xth quantile gives the value of inflation such that

there is x% chance that inflation is below this value, but it does not depend on the exact

distribution of inflation below this threshold. The interest of expected shortfall and longrise
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Figure 4. Dispersion of inflation expected shortfall and longrise

2000 2005 2010 2015 2020
0

0.5

1

1.5

2

2.5

3

Note: Standard deviation of expected shortfall and longrise SF it+h and LRit+h across country i, for

p = 0.10 and forecast horizon h = 12. SF it+h and LRit+h are defined by Equation (6). Figures D3 and

D4 in Appendix D report the expected shortfall and longrise by country.

metrics developed by Adrian, Boyarchenko, and Giannone (2019) for economic growth is to

exploit all this information. Following these authors, we apply these metrics to inflation

differentials.

Figure 4 depicts the standard deviations of the longrises and shortfalls associated with the

10% risk level for the one-year ahead horizon. These figures confirm the pattern previously

described using the dispersion of inflation quantiles. During the first decade of the euro area,

the longrise outweighs the shortfall, while afterwards the shortfall is a more pronounced

source of inflation dispersion.

IV. The Drivers of Inflation Dispersion

Having described the nature of the dispersion of the inflation in the euro area according

to the nature of the extreme risk, either upside or downside, we investigate in this section

the drivers of inflation dispersion. For this purpose, we elaborate counterfactual scenarios

by muting selected explanatory variables in the right-hand side of the estimated quantile

Phillips curve.

IV.1. Financial Stress. The first scenario assesses the role of financial conditions in the

dynamics of inflation dispersion. We predict for each country the conditional quantiles of
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Figure 5. Dispersion of conditional quantiles without financial stress
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Note: The case without financial stress corresponds to the standard deviation of conditional quantiles

predicted for f it = 0 in the quantile Phillips curve (2) for quantiles τ = {0.1; 0.5; 0.9} and forecast horizon

h = 12.

inflation under the assumption that the financial stress variable is set to zero for all countries

at each date (f it = 0) in Equation (2). In this prediction, we keep the estimated values

of the Phillips curve for each country and the realizations of the other economic variables

unchanged. Figure 5 shows the results for the forecast horizon h = 12, and the three quantiles

of interest, τ = {0.1, 0.5, 0.9}. Each panel compares the benchmark inflation dispersion (solid

lines) and the dispersion without financial stress (dashed lines).

Up to the Great Recession of 2008-2009, the euro area was immune to financial stress and

therefore the predicted dispersion without this stress is very close to the benchmark. The

role of financial stress then takes on great importance. This is especially the case for the

10th quantile. Looking at Panel A, the dispersion would have remained stable throughout

the financial crisis period between 2008 and 2015 at a level three times smaller than the

observed peaks. It is interesting to note that the absence of financial stress would also have

led to less dispersion in inflation for the 50th quantile (Panel B). The results are however less

striking for the 90th quantile, even if tighter financial conditions have still affected inflation

dispersion.

These results are consistent with the common analysis of the role of financial crises in

the extreme risk of deflation that weighed on the euro area. Since then, the situation has

changed. International tensions in value chains and energy prices following the end of the

COVID crisis and the war in Ukraine have raised the specter of a return to the extreme

inflation of the 1970s.



THE RISK OF INFLATION DISPERSION IN THE EURO AREA 19

Figure 6. Dispersion of conditional quantiles without oil price and supply

chain pressures
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Note: The case without oil price corresponds to the standard deviation of conditional quantiles predicted

for πo,∗t = π∗,i
t in the quantile Phillips curve (2). The case without supply chain pressures corresponds

to the standard deviation of conditional quantiles predicted for sct = 0 in the quantile Phillips curve (2).

The first column of panels is for the one-year forecast (h = 12) and the second one is for the one-quarter

forecast (h = 3). The first row of panels is for the 10th quantile, the second one for the 50th quantile,

and the third one for the 90th quantile.
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IV.2. Pressures on Supply Chains and Energy Prices. To analyze this recent period,

we develop two scenarios: the scenario without oil price for πo,it = π∗,it and the scenario

without supply chain pressures for sct = 0. As before, for these predictions, we keep the

estimated values of the Phillips curve for each country and the realizations of the other

economic variables unchanged. Figure 6 shows the results for the three quantiles, τ =

{0.1, 0.5, 0.9} using core inflation. Each panel compares the benchmark inflation dispersion

(solid lines), the dispersion without oil price (dotted lines), and the dispersion without supply

chain pressures (dashed lines). We report results only for the period after 2018 to facilitate

the interpretation of the figure.

The results are reported for two forecast horizons, one year and one quarter (i.e. h = 12

and h = 3, respectively). The one-year forecast is more informative of trends than the one-

quarter forecast. On the other hand, the advantage of the one-quarter forecast is that it

provides information at a higher frequency. For instance, the abruptness of the COVID crisis

is more accurately measured with the one-quarter forecast than with the one-year forecast,

because inflation series are averaged over a shorter period. This explains why the peak

observed in May 2020 greatly exceeds all other observed values of inflation dispersion for

h = 3. The interest of the latter is also to be able to include in the analysis the last nine

months of observation during the recent period marked by strong changes in the dynamics

of inflation. More precisely, the one-quarter forecast has the ability to portray the dispersion

of inflation until April 2022 (in the case where h = 3, the last point in April 2022 is the

average of expected inflation between May and July 2022, given the data observed in April

2022), whereas the one-year forecast computes the dispersion of inflation based on data until

July 2021 (recall that in the case where h = 12, the last point in July 2021 is the average

of expected inflation between August 2021 and July 2022, given the data observed in July

2021). Therefore, looking at recent increase in oil price and supply chain pressures index over

the last months (at least after July 2021), we expect that estimating the model with h = 3

will allow to give new evidence on the effects of the recent evolution of oil price and supply

chain pressures on the dispersion of inflation across euro area countries.7

7Estimates using h = 3 take into account the peak observed in the global supply chain pressures index in

December 2021, which is not covered when estimating the model using h = 12. Similarly, model estimates

with h = 3 include the recent and huge increase of more than 58% in the price of the barrel (in U.S. dollars)

from December 2021 to March 2022, which is not covered when the model is estimated setting h = 12.

https://www.newyorkfed.org/research/policy/gscpi#/overview
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Supply chain tensions play a more prominent role than oil price in the dynamics of inflation

dispersion. It is noteworthy that value chain pressures play a major role in the two extreme

quantiles of inflation (10th and 90th). For both quantiles, inflation dispersion would have

returned to pre-COVID values without the pressures on value chains.8

As a robustness check, we have also conducted those counterfactual exerises using HICP

instead of core HICP. Considering headline inflation in the analysis confirm the previous re-

sults of the role of global supply chain in the evolution of inflation distribution. See Appendix

E for further details.

IV.3. Structural Heterogeneity. We propose a last exercise of counterfactual scenarios

to assess the role of economic structure heterogeneity in inflation dispersion. Inflation may

diverge between countries, either because they are exposed to different economic events or

because their different economic structures lead them to react differently to these events. To

assess the respective role of structures and the economic context, we proceed as follows. We

take France as a reference country. Then, we simulate the conditional quantiles of inflation

under two assumptions: (i) all countries share the same Phillips curve coefficients as France,

but are exposed to the economic variables actually observed in their own country; (ii) all

countries are exposed to the same economic variables as France, but retain the estimated

Phillips curve coefficients for each of them. Figure 7 shows the predicted inflation dispersion

by quantiles under the two assumptions (we only consider in this case the one-year forecast).

The dispersion of inflation is clearly higher when common economic series is considered (Panel

A) than when we consider common structure (Panel B). This result indicates that the great

heterogeneity in the national Phillips curves is the main driver of inflation dispersion in the

euro area.

V. Robustness Analysis: a Markov-switching Approach

In the existing literature, Markov-switching models have been proposed as an alternative

method over quantile regressions to characterize business cycle variation in the probability

8To check the robustness of our results, we also run the benchmark model considering energy price rather

than oil price. Despite differences in the two series over the last few months due to a record-high increase in

natural gas prices in Europe, the results are robust to the choice of the series (the correlation between energy

and oil prices is 0.96 from January 1999 to July 2022).
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Figure 7. Dispersion of inflation quantiles for common structure or common

economic series
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Note: Standard deviation of conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) across country i, for quantiles

τ = {0.1; 0.5; 0.9} and forecast horizon h = 12. Panel A shows the standard deviation of the conditional

quantiles assuming that all countries experienced the French economic series while preserving their own

estimated coefficients for the Phillips curve. Panel B shows the standard deviation of the conditional

quantiles assuming that all countries share the estimated coefficients for the French Phillips curve while

preserving their own national economic series.

distribution and time-varying risks around GDP growth. Using a semi-structural model sub-

ject to Markov mean and variance shifts, Caldara et al. (2021) investigate the role of the

financial and real conditions to predict tail risks in the U.S. economy. Lhuissier (2022) pro-

poses a regime-switching skew-normal model to examine time variation in the third moment

of the predictive distribution of euro area economic growth. López-Salido and Loria (2022)

also propose a Markov-switching framework as an alternative method to study time variation

in the predictive distribution of inflation in the U.S. This section follows this recent literature

and adopts a Markov-switching framework as a robustness analysis.
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V.1. The Framework. We employ a statistical model in which the observation π̄it+1,t+h is

generated as follows:

π̄it+1,t+h = µi(sit) +
(
1− λi(sit)

)
π∗,it−1 + λi(sit)π

LTE,i + θi(sit)
(
uit − u

∗,i
t

)
+

γi(sit)
(
πo,∗t − π

∗,i
t

)
+ δi(sit)f

i
t + φi(sit)sct + σi(sit)ε

i
t, (8)

where εit follows a standard normal distribution, and sit is an exogenous three-states first-order

Markov process with the following transition matrix Qi

Qi =


qi1,1 qi1,2 qi1,3

qi2,1 qi2,2 qi2,3

qi3,1 qi3,2 qi3,3

 , (9)

where qiu,v = Pr(sit = u|sit−1 = v) denote the transition probabilities that sit is equal to u

given that sit−1 is equal to v, with u, v ∈ {1, 2, 3}, qku,v ≥ 0 and
∑3

v=1 q
i
u,v = 1.

Our framework is subject to Markov mean and variance shifts over time. In particular,

we impose three regimes of inflation, which can be considered as regimes of low (Regime 1),

medium (Regime 2) and high (Regime 3) inflation. Both coefficients and standard deviations

can change over time according to the same Markov process, meaning that the time of changes

for coefficients is stochastically dependent of the times of changes for standard deviations.

We rely on Bayesian methods to estimate our Markov-switching model. When dealing

with a Markov-switching model, the likelihood can be evaluated according to the Hamilton

(1989)’s filter, and then combined with a prior distribution for the parameters. We use the

idea of Gibbs sampling to obtain the empirical joint posterior density by sampling alternately

from the following conditional posterior distribution. Our Gibbs sampler procedure begins

with setting parameters at the peak of the posterior density function. The Monte Carlo

Markov Chains (MCMC) sampling sequence involves a 4-block Gibbs sampler, in which we

can generate in a flexible and straightforward manner alternatively draws from full conditional

posterior distributions. Overall, our procedure follows the MCMC approach proposed by

Albert and Chib (1993).

Regarding our prior, they are very dispersed and cover a large parameter space so that

so that the data, through the likelihood, dominate the posterior distribution. It may be

worth noting that we impose the exact same prior across regimes, so that the differences
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in parameters between regimes result more from data (i.e., the likelihood) rather than pri-

ors. Moreover, we impose the same restrictions on the coefficients as those imposed in the

estimation of quantile regressions.

The online appendix provides the computational details for our maximization and MCMC

procedures, as well as for the choice of the prior.

V.2. Empirical Results. Since we are studying whether a Markov-switching framework is

able to produce quantitatively similar dispersion measures as those from a quantile regressions

approach, we put in the appendix the estimates of Markov-switching Phillips curves by

country — see Tables F1, F2, F3 and F4. However, it may worth saying that, in spite of

differences in coefficients estimated at the country level, the results of cross-sectional mean

and standard deviation give similar interpretation than those from the quantile regression

model: high and stable anchoring of inflation expectations across inflation regimes (low,

medium and high), steeper slope of the Phillips curve in medium and high than in low

inflation regimes, key role of financial stress in low inflation regime with high dispersion

across countries, and important role of global supply chain in high inflation regime.

Figure 8 reports the regime probabilities — evaluated at the mode — for each country. We

report the smoothed probabilities in the sense of Kim (1994); i.e., full sample information

is used in getting the regime probabilities at each date. One can see from the figure that

each euro area country has been characterized by numerous switches between regimes over

time. The times of changes are most of the time unsynchronized across countries, suggesting

that the dispersion across countries is very much in evidence. For example, during the

sovereign debt crisis in 2010-2012, countries most hit by the crisis like Portugal, Greece, Spain

and Ireland, experienced a regime of low inflation, while others like Germany, Finland, and

Austria were in a high or medium inflation regime. One exception regarding the divergence

across countries is during the recent period where the high inflation regime has been the

predominant regime for most of countries.

To provide a more formal analysis of the inflation dispersion and, to be more in line with

the results of our quantile regressions, we also produce the cross-country dispersion of the

expected shortfall and longrise measures produced from our Markov-switching model, as

shown in Figure 9. Following Lhuissier (2022), the calculation of these measures follows a

simulation procedure. First, we recover the smoothed regime probabilities for each date.
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Figure 8. Regime Probabilities
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Note: Probabilities are smoothed in the sense of Kim (1994), i.e., full sample information is used in

getting the regime probabilities at each date. The color code is as follows: blue (Regime 1, low inflation),

red (Regime 2, medium inflation), yellow (Regime 3, high inflation).

Second, we generate our predictive distribution from the mixture of normal distributions

using those probabilities as weights. Third, we compute the individual metrics using the

empirical distribution, and then compute the dispersion measures. As shown by the figure,

inflation dispersion is clearly higher for upside risks (expected longrise) than for downside

risks (expected shortfall) during the first decade of the euro area. Thereafter, the pattern

is reversed. The dispersion of downside risks prevails over upside risks since the Great

Recession of 2008-2009. These findings are thus consistent with the stylized facts produced

from quantile regressions as shown in Figure 5.

Overall, our parametric Markov-switching framework is able to produce quantitatively

similar results to the more flexible approach of Quantile Regressions of Adrian, Boyarchenko,
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Figure 9. Dispersion of inflation expected shortfall and longrise from Markov-

switching model
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Note: Standard deviation of expected shortfall and longrise SF it+h and LRit+h across country i and for

forecast horizon h = 12. SF it+h and LRit+h are computed using the Markov-switching model.

and Giannone (2019). We thus confirm the results of Caldara et al. (2021), that is, “the

estimates of tail risk have robust features that can be captured with multiple models”.

VI. Conclusion

To study inflation differentials in the euro area, we have adopted a ”beyond the mean”

approach by considering downside and upside inflation risks. This approach enabled us to

identify three phases in the euro area. The first decade of the euro area where the risk of

inflation dispersion in the euro area is associated with still significant upside risks despite

the ongoing convergence process. The second decade of the euro area during which the risk

of dispersion comes from downside risks to inflation or even deflation risks in a context of

financial crises. The present period, in the wake of the COVID crisis with pressures on

oil price and value chains, where the two risks, downside and upside, co-exist and feed the

dispersion of inflation in the euro area.

Our results show that the high dispersion of extreme inflation risks described in this article

is more the consequence of heterogeneous economic structures than of exposure to different

national shocks. In this context, it is well known, at least since Benigno (2004), that targeting

an average inflation rate of the monetary union, weighted by the size of the economies,



THE RISK OF INFLATION DISPERSION IN THE EURO AREA 27

may not be optimal when union’s members are heterogeneous. Instead, Benigno (2004)

suggested targeting an average inflation rate using a weighting scheme that gives more weight

to economies with the highest degree nominal rigidities–recently, Kekre (2022) proposes a

similar analysis leading to giving greater weights to economies with more sclerotic labor

markets. Future research would be of interest in investigating optimal monetary policy rules

in the context of dispersed inflation tail risks.

References

Adrian, T., N. Boyarchenko, and D. Giannone. 2019. “Vulnerable growth.” American Eco-

nomic Review 109:1263–89.

Albert, J.H., and S. Chib. 1993. “Bayes Inference via Gibbs Sampling of Autoregressive Time

Series Subject to Markov Mean and Variance Shifts.” Journal of Business & Economic

Statistics 11:1–15.

Amiti, M., S. Heise, and A. Wang. 2021. “High Import Prices along the Global Supply Chain

Feed Through to US Domestic Prices.” Working paper, Federal Reserve Bank of New York.

Andrade, P., V. Fourel, E. Ghysels, and J. Idier. 2014. “The financial content of inflation

risks in the euro area.” International Journal of Forecasting 30:648–659.

Angeloni, I., and M. Ehrmann. 2007. “Euro area inflation differentials.” The BE Journal of

Macroeconomics 7.

Azzalini, A., and A. Capitanio. 2003. “Distributions Generated by Perturbation of Symmetry

with Emphasis on a Multivariate Skew t-distribution.” Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 65:367–389.

Ball, L., and S. Mazumder. 2021. “A Phillips curve for the euro area.” International Finance

24:2–17.

Banerjee, R.N., J. Contreras, A. Mehrotra, and F. Zampolli. 2020. “Inflation at risk in

advanced and emerging market economies.”, pp. .

Batini, N., B. Jackson, and S. Nickell. 2005. “An open-economy new Keynesian Phillips curve

for the UK.” Journal of Monetary Economics 52:1061–1071.

Beck, G.W., K. Hubrich, and M. Marcellino. 2009. “Regional inflation dynamics within and

across euro area countries and a comparison with the United States.” Economic Policy

24:142–184.



THE RISK OF INFLATION DISPERSION IN THE EURO AREA 28

Benigno, G., J. di Giovanni, J.J. Groen, and A.I. Noble. 2022. “A New Barometer of Global

Supply Chain Pressures.” Liberty street economics, Federal Reserve Bank of New York.

Benigno, P. 2004. “Optimal monetary policy in a currency area.” Journal of international

economics 63:293–320.

Blanchard, O., E. Cerutti, and L. Summers. 2015. “Inflation and Activity – Two Explorations

and their Monetary Policy Implications.” Working Paper No. 21726, National Bureau of

Economic Research, November.

Botev, Z.I. 2017. “The normal law under linear restrictions: simulation and estimation via

minimax tilting.” Journal of the Royal Statistical Society Series B 79:125–148.

Brunnermeier, M.K., and Y. Sannikov. 2014. “A Macroeconomic Model with a Financial

Sector.” American Economic Review 104:379–421.

Caldara, D., D. Cascaldi-Garcia, P. Cuba-Borda, and F. Loria. 2021. “Understanding

Growth-at-Risk: A Markov-Switching Approach.” Unpublished.

Carter, C.K., and R. Kohn. 1994. “On Gibbs Sampling for State Space Models.” Biometrika

81:541–553.

Christiano, L.J., M.S. Eichenbaum, and M. Trabandt. 2015. “Understanding the Great Re-

cession.” American Economic Journal: Macroeconomics 7:110–167.
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Estrada, Á., J. Gaĺı, and D. López-Salido. 2013. “Patterns of convergence and divergence in

the euro area.” IMF Economic Review 61:601–630.
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Appendix A. Data

All variables are monthly time series covering January 1999 through July 2022. The

following variables use data obtained directly from different sources:

• Harmonized Index of Consumer Prices

– Source: ECB - ICP (Indices of Consumer prices)

– Details: Monthly – Neither seasonally nor working day adjusted – HICP - All-

items excluding energy and food – Eurostat – Index

– Data transformation: Authors’ calculations using the x13 toolbox to get season-

ally adjusted series for each euro area member countries.

• Unemployment rate

– Source: Eurostat - Unemployment by sex and age – monthly data

– Details: Monthly – Seasonally adjusted data, not calendar adjusted data – Total

– Percentage of population in the labor force

• Natural Rate of Unemployment

– Source: Authors’ calculations

– Details: HP-filtered trend (with smoothing parameter λ = 14, 400 of unemploy-

ment rate).

• Oil Prices

– Source: U.S. Energy Information Administration - Spot Prices

– Details: Crude Oil Prices: Brent - Europe - Dollars per Barrel, Not Seasonally

Adjusted

• Supply Chain index

– Source: New York Fed’s website

– Details: Global Supply Chain Pressure Index (GSCPI)

• Financial conditions (CISS)

– Source: ECB - CISS

– Details: Daily – ECB – Economic indicator – New Composite Indicator of Sys-

temic Stress (CISS) – Index

– Data transformation: Authors’ calculations to get monthly average of the series.

• Financial conditions (CLIFS)

– Source: ECB - CLIFS
ii

https://www.newyorkfed.org/research/policy/gscpi#/overview


– Details: Monthly – ECB – Economic indicator – Country-Level Index of Financial

Stress (CLIFS) Composite Indicator – Index

• Long-Term Inflation Expectations

– Source: Consensus Economics

– Details: Six-to-ten-year-ahead mean CPI inflation forecasts.

– Data transformation: Euro area forecasts for Luxembourg (no forecast available),

spline interpolation for all missing data in April 1999.
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Appendix B. National Phillips Curve Estimates (tables)

Table B1. Phillips curve estimates for the 10th quantile

µ̂iτ λ̂iτ θ̂iτ γ̂iτ δ̂iτ φ̂iτ

Germany −1.07
[−1.20;−0.94]

0.56
[0.30;0.81]

−0.00
[−0.14;0.14]

0.41
[0.21;0.61]

0.78
[0.35;1.20]

0.13
[0.01;0.25]

France −1.15
[−1.38;−0.93]

1.00
[0.79;1.21]

−0.00
[−0.17;0.17]

0.26
[0.02;0.51]

−0.84
[−1.51;−0.17]

0.13
[0.04;0.22]

Italy −0.60
[−0.72;−0.48]

0.20
[0.09;0.31]

−0.00
[−0.11;0.11]

−0.00
[−0.07;0.07]

−1.34
[−1.95;−0.73]

0.00
[−0.05;0.05]

Spain −0.89
[−1.31;−0.47]

0.52
[0.24;0.79]

−0.00
[−0.15;0.15]

0.38
[−0.12;0.87]

−4.20
[−5.85;−2.54]

0.13
[−0.01;0.27]

Netherlands −1.16
[−1.25;−1.08]

0.88
[0.80;0.95]

−0.78
[−0.97;−0.58]

0.37
[0.19;0.56]

0.35
[−0.13;0.83]

0.22
[0.13;0.30]

Finland −0.97
[−1.11;−0.83]

0.38
[0.22;0.53]

−0.08
[−0.20;0.03]

0.18
[−0.13;0.49]

1.00
[0.36;1.65]

0.33
[0.21;0.45]

Ireland −1.37
[−1.63;−1.10]

0.81
[0.60;1.02]

−0.00
[−0.05;0.05]

0.39
[−0.17;0.94]

−4.85
[−6.85;−2.84]

0.06
[−0.11;0.22]

Austria −0.58
[−0.68;−0.47]

0.76
[0.63;0.89]

−0.00
[−0.05;0.05]

−0.00
[−0.05;0.05]

−0.17
[−0.58;0.23]

0.13
[0.06;0.20]

Portugal −1.24
[−1.45;−1.02]

0.51
[0.38;0.63]

−0.00
[−0.05;0.05]

0.40
[0.03;0.76]

−0.66
[−1.43;0.11]

0.00
[−0.01;0.01]

Belgium −0.63
[−0.67;−0.60]

1.00
[0.97;1.03]

−0.00
[−0.08;0.08]

0.02
[−0.03;0.06]

0.30
[0.06;0.54]

0.03
[−0.01;0.06]

Luxembourg −0.54
[−0.67;−0.41]

0.82
[0.61;1.03]

−0.00
[−0.14;0.14]

0.52
[0.31;0.74]

0.02
[−0.71;0.75]

0.11
[0.02;0.21]

Greece −0.96
[−1.69;−0.22]

0.43
[0.29;0.58]

−0.14
[−0.33;0.06]

1.42
[0.22;2.61]

−5.84
[−7.73;−3.95]

0.00
[−0.11;0.11]

Mean -0.93 0.65 -0.08 0.36 -1.29 0.11

Std. Dev. 0.28 0.26 0.22 0.38 2.34 0.10

Note: Table B1 displays the coefficients of the quantile Phillips curve defined by Equation (2):

Q̂τ (π̄it+1,t+h|xit) = µ̂iτ +
(

1− λ̂iτ
)
π∗,i
t−1 + λ̂iτπ

LTE,i + θ̂iτ

(
uit − u

∗,i
t

)
+ γ̂iτ

(
πo,∗t − π

∗,i
t

)
+ δ̂iτf

i
t + φ̂iτsct

estimated by country for the 10th quantile. The last two rows show the unweighted means and the

standard deviations of coefficients across countries.
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Table B2. Phillips curve estimates for the 50th quantile

µ̂iτ λ̂iτ θ̂iτ γ̂iτ δ̂iτ φ̂iτ

Germany −0.47
[−0.55;−0.38]

1.00
[0.95;1.05]

−0.27
[−0.44;−0.10]

0.16
[0.05;0.27]

−0.33
[−0.59;−0.07]

0.25
[0.15;0.35]

France −0.20
[−0.36;−0.03]

0.69
[0.54;0.84]

−0.25
[−0.46;−0.05]

0.33
[0.17;0.49]

−1.46
[−2.03;−0.89]

0.00
[−0.08;0.08]

Italy 0.07
[−0.05;0.19]

0.24
[0.12;0.36]

−0.03
[−0.24;0.18]

−0.00
[−0.11;0.11]

−1.57
[−2.26;−0.88]

0.04
[−0.06;0.14]

Spain −0.15
[−0.25;−0.05]

0.47
[0.35;0.60]

−0.00
[−0.06;0.06]

0.25
[0.02;0.47]

−1.10
[−2.12;−0.08]

0.00
[−0.04;0.04]

Netherlands −0.38
[−0.56;−0.20]

0.71
[0.56;0.85]

−0.67
[−0.98;−0.35]

0.58
[0.34;0.82]

0.25
[−0.92;1.42]

0.30
[0.12;0.48]

Finland −0.11
[−0.22;0.00]

0.19
[0.06;0.32]

−0.00
[−0.06;0.06]

0.55
[0.21;0.90]

0.50
[−0.30;1.30]

0.34
[0.23;0.45]

Ireland −0.22
[−0.45;0.01]

0.46
[0.29;0.63]

−0.00
[−0.13;0.13]

1.12
[0.58;1.67]

−2.05
[−4.11;0.00]

0.27
[0.07;0.46]

Austria −0.07
[−0.15;0.00]

0.99
[0.93;1.05]

−0.00
[−0.05;0.05]

0.17
[0.05;0.29]

−0.05
[−0.70;0.60]

0.24
[0.13;0.34]

Portugal −0.21
[−0.41;−0.01]

0.47
[0.30;0.64]

−0.00
[−0.14;0.14]

0.31
[−0.07;0.69]

−1.51
[−2.72;−0.30]

0.00
[−0.09;0.09]

Belgium −0.28
[−0.37;−0.18]

1.00
[0.96;1.04]

−0.08
[−0.21;0.05]

−0.00
[−0.06;0.06]

0.22
[−0.19;0.62]

0.04
[−0.01;0.09]

Luxembourg −0.02
[−0.13;0.09]

0.81
[0.67;0.95]

−0.24
[−0.40;−0.08]

0.50
[0.35;0.64]

−0.28
[−0.87;0.32]

0.08
[−0.01;0.17]

Greece 0.34
[0.07;0.61]

0.46
[0.37;0.55]

−0.36
[−0.62;−0.10]

0.09
[−0.32;0.50]

−5.48
[−7.96;−3.00]

0.00
[−0.10;0.10]

Mean -0.14 0.62 -0.16 0.34 -1.07 0.13

Std. Dev. 0.21 0.29 0.21 0.32 1.63 0.14

Note: Table B2 displays the coefficients of the quantile Phillips curve defined by Equation (2):

Q̂τ (π̄it+1,t+h|xit) = µ̂iτ +
(

1− λ̂iτ
)
π∗,i
t−1 + λ̂iτπ

LTE,i + θ̂iτ

(
uit − u

∗,i
t

)
+ γ̂iτ

(
πo,∗t − π

∗,i
t

)
+ δ̂iτf

i
t + φ̂iτsct

estimated by country for the 50th quantile. The last two rows show the unweighted means and the

standard deviations of coefficients across countries.
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Table B3. Phillips curve estimates for the 90th quantile

µ̂iτ λ̂iτ θ̂iτ γ̂iτ δ̂iτ φ̂iτ

Germany 0.43
[0.27;0.58]

1.00
[0.97;1.03]

−0.00
[−0.06;0.06]

0.00
[−0.13;0.13]

−1.14
[−1.56;−0.73]

0.42
[0.22;0.62]

France 0.37
[0.25;0.48]

0.74
[0.64;0.84]

−0.42
[−0.61;−0.23]

0.03
[−0.07;0.12]

−1.71
[−2.09;−1.33]

0.28
[0.15;0.42]

Italy 0.80
[0.64;0.97]

0.43
[0.20;0.66]

−0.22
[−0.49;0.06]

−0.00
[−0.24;0.24]

0.71
[−0.82;2.24]

0.00
[−0.11;0.11]

Spain 0.75
[0.46;1.04]

0.63
[0.44;0.82]

−0.00
[−0.24;0.24]

0.60
[0.25;0.95]

−1.02
[−2.31;0.27]

0.18
[0.00;0.36]

Netherlands 0.58
[0.19;0.97]

0.42
[0.19;0.64]

−0.00
[−0.66;0.66]

1.35
[0.77;1.92]

2.48
[−0.61;5.58]

0.16
[−0.02;0.35]

Finland 0.46
[0.29;0.62]

0.55
[0.39;0.71]

0.00
[−0.04;0.04]

0.85
[0.67;1.02]

1.33
[0.06;2.61]

0.32
[0.21;0.44]

Ireland 1.80
[1.33;2.28]

0.14
[−0.04;0.33]

−0.00
[−0.25;0.25]

1.21
[0.62;1.80]

−1.67
[−4.04;0.71]

0.82
[0.50;1.14]

Austria 0.54
[0.38;0.71]

1.00
[0.93;1.07]

−0.00
[−0.07;0.07]

0.47
[0.24;0.70]

0.85
[0.06;1.63]

0.53
[0.33;0.73]

Portugal 1.92
[1.36;2.47]

0.19
[−0.02;0.40]

−0.34
[−0.65;−0.03]

1.00
[0.54;1.46]

−1.65
[−3.98;0.68]

0.86
[0.51;1.21]

Belgium 0.71
[0.54;0.89]

1.00
[0.99;1.01]

−0.69
[−0.91;−0.47]

0.27
[0.06;0.49]

−0.22
[−0.85;0.40]

0.39
[0.21;0.56]

Luxembourg 0.52
[0.38;0.66]

0.75
[0.63;0.87]

−0.00
[−0.16;0.16]

0.48
[0.33;0.64]

−0.16
[−0.73;0.41]

0.32
[0.20;0.45]

Greece 1.14
[0.80;1.48]

0.63
[0.47;0.80]

−0.01
[−0.24;0.21]

1.22
[0.77;1.67]

−0.04
[−2.19;2.11]

0.26
[−0.03;0.56]

Mean 0.83 0.62 -0.14 0.62 -0.19 0.38

Std. Dev. 0.52 0.30 0.23 0.50 1.33 0.25

Note: Table B3 displays the coefficients of the quantile Phillips curve defined by Equation (2):

Q̂τ (π̄it+1,t+h|xit) = µ̂iτ +
(

1− λ̂iτ
)
π∗,i
t−1 + λ̂iτπ

LTE,i + θ̂iτ

(
uit − u

∗,i
t

)
+ γ̂iτ

(
πo,∗t − π

∗,i
t

)
+ δ̂iτf

i
t + φ̂iτsct

estimated by country for the 90th quantile. The last two rows show the unweighted means and the

standard deviations of coefficients across countries.
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Appendix C. Case study: Germany and Greece during the Financial Crisis

In this section, we propose a case study to illustrate the situation of increasing dispersion

of downside inflation risks. We compare the conditional distributions of predicted inflation

for two polar countries of the euro area, Germany and Greece, for two specific dates. The

first one, January 2006, reflects the quiet period of the euro area. The second, May 2012,

is instead in the period of financial turmoil. Figure C1 shows the conditional distribution

of inflation forecast one year ahead (h = 12) using the estimated skewed t-density functions

defined by Equation (3) for each country at these two dates.

In January 2006, predicted inflation is higher in Greece than in Germany. The distribution

for Greece is shifted to the right compared to Germany. For this date, the dispersion is

homogeneous for the whole distribution (the differences between the quantiles are between

1.34 and 2.21 percentage points of inflation).

The situation is radically different in May 2012, mainly due to the change in the distribution

of inflation in Greece. Greece is then subject to a severe risk of deflation. The distribution

of inflation has shifted to the left but it has also flattened considerably giving rise to a high

level of downside inflation risk. There is then a 10% chance that inflation will be below

-2.38% in the coming year. In terms of dispersion, this is no longer homogeneous for the

entire distribution in May 2012, unlike January 2006. The 10th quantile for Greece is 3.17

percentage points lower than that of Germany. This is almost twice as much as the gap in

the 50th. Interestingly, the gap in the 90th quantile is now very close to zero, meaning that

the dispersion of inflation rates between Germany and Greece in May 2012 has not been

associated with the dispersion of quantiles at the top of the distribution. May 2012 is thus

a typical example of high risk of inflation dispersion from the bottom of the distribution, i.e.

associated with an extreme risk of low inflation.
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Figure C1. Probability densities
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Note: Estimated skewed t-density functions defined by Equation (3) for one-year-ahead (h = 12) inflation

rates for Germany and Greece in January 2006 (left panel) and May 2012 (right panel). Vertical lines

represent the respective quantiles extracted from the estimated distribution: dashed blue (red) lines

represent quantile τ = 0.1 for Germany (Greece), and dotted blue (red) lines represent quantile τ = 0.9

for Germany (Greece).

viii



Appendix D. Conditional Quantiles, Expected Shortfall and Longrise

Figure D1. Conditional quantiles by country
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Note: Conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) for country i, quantiles τ = {0.1; 0.5; 0.9} and

forecast horizon h = 12. Conditional quantiles Q̂τ (π̄it+1,t+h|xit) are simulated using the estimates of

Equation (2). ix



Figure D2. Conditional quantiles by country
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Note: Conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) for country i, quantiles τ = {0.1; 0.5; 0.9} and

forecast horizon h = 12. Conditional quantiles Q̂τ (π̄it+1,t+h|xit) are simulated using the estimates of

Equation (2).
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Figure D3. Expected shortfall and longrise by country
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Note: Expected shortfall and longrise SF it+h and LRit+h for country i, p = 0.10 and forecast horizon

h = 12. SF it+h and LRit+h are defined by Equation (6).
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Figure D4. Expected shortfall and longrise by country
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Note: Expected shortfall and longrise SF it+h and LRit+h for country i, p = 0.10 and forecast horizon

h = 12. SF it+h and LRit+h are defined by Equation (6).

xii



Appendix E. Counterfactual Exercises using HICP

Figure E5 depicts the results using HICP instead of core HICP used in the benchmark

model. Considering headline inflation in the analysis confirms previous results of the role of

global supply chain in the evolution of inflation distribution. However, the results are even

more striking than in the case where core inflation is used, especially regarding the results for

h = 12 and the 90th quantile (Panel E). The dispersion peaks around March 2020 and at the

end of the sample period of estimation to reach levels almost thrice the one observed during

the COVID crisis. However, without supply chain pressures, the dispersion of inflation at

the top of the distribution would have been muted, or at least similar to the level observed

before the pandemic outbreak. From this point of view, tensions on global supply chain is

a more important feature of HICP dispersion than core inflation dispersion across euro area

countries.

On the other hand, the results for h = 3 and the 90th quantile (Panel F) contrast a little

with the previous ones, at least regarding the last months of the estimation period. They

suggest that supply chain pressures have played a less prominent role in inflation dispersion

during the COVID crisis, and that this effect has been particularly decreasing over the last

few months of the sample period. Simulated series without supply chain seems to catch up

the dispersion series estimated with the benchmark model.
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Figure E5. Dispersion of conditional quantiles without oil price and supply

chain pressures (HICP inflation)
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Note: The case without oil price corresponds to the standard deviation of conditional quantiles predicted

for πo,∗t = π∗,i
t in the quantile Phillips curve (2) estimated with HICP. The case without supply chain

pressures corresponds to the standard deviation of conditional quantiles predicted for sct = 0 in the

quantile Phillips curve (2). The first column of panels is for the one-year forecast (h = 12) and the

second one is for the one-quarter forecast (h = 3). The first row of panels is for the 10th quantile, the

second one for the 50th quantile, and the third one for the 90th quantile.xiv



Appendix F. Markov-switching Procedure

F.1. The Posterior Density. Since the posterior density function of Markov-switching

models is very non-Gaussian, it is essential to find the posterior mode via an optimization

routine prior to sample from the posterior density. The estimate of the mode not only

represents the most likely value, but also serves as a crucial starting point for initializing

different chains of Monte Carlo Markov Chains (MCMC) draws.

The strategy to find the posterior mode is to generate a sufficient number of draws from

the prior distribution of each parameter. Each set of points is then used as starting points to

the CSMINWEL program, the optimization routine developed by Christopher A. Sims. Starting

the optimization process at different values allows us to correctly cover the parameter space

and avoid getting stuck in a “local” peak. Note, however, that we do not need to use a more

complicated method for finding the mode like the blockwise optimization method developed

by Sims, Waggoner, and Zha (2008). The authors employ a class of richly parameterized mul-

tivariate Markov-switching models in which the parameters are break into several subblocks,

and then apply a standard hill-climbing quasi-Newton optimization routine to each block,

while keeping the other subblocks constant, in order to maximize the posterior density. The

size of Markov-switching univariate models remains relatively small and allows us to employ

a more standard technique.

The posterior density is not of standard form, making it impossible to sample directly from

this probability distribution. One can, however, use the idea of Gibbs sampling to obtain

the empirical joint posterior density by sampling alternately from the following conditional

posterior distribution. Our Gibbs sampler procedure begins with setting parameters at the

peak of the posterior density function. The MCMC sampling sequence involves a 4-block

Gibbs sampler, in which we can generate in a flexible and straightforward manner alterna-

tively draws from full conditional posterior distributions. Overall, our procedure follows the

MCMC approach proposed by Albert and Chib (1993).

In the remainder of this section, we simplify the notation by suppressing the superscript

i denoting the country of interest. For 1 ≤ k ≤ H, let θ(k) = [µ(k), λ(k), θ(k), γ(k),

δ(k), φ(k)]′, St = [s1, . . . , st], and qk be the k-th column of Q. The objets θ(k) and qk are
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vectors of parameters. The prior on the set of parameters is given by:

p(θ(k)) = normal(θ(k)|θ̄1, θ̄2), (10)

p(σ(k)) = inv-gamma(σ(k)|σ̄1, σ̄2), (11)

p(qk) = dirichlet(qk|q̄1,k, q̄2,k, q̄3,k), (12)

where θ̄1, θ̄2, q̄1,j, q̄2,j, and q̄3,j are the hyperparameters; normal(x|.) denotes the multi-

variate normal distribution; inv-gamma(x|.) denotes the inverse gamma distribution; and

dirichlet(x|.) denotes the dirichlet distribution.

In our empirical setting, our normal prior for θ(k) is very dispersed and cover a large

parameter space. We choose a prior with the mean 0.00 and the standard deviation 5.00,

except for the prior of λ(k), of which the mean 0.50 and the standard deviation 0.20, and

truncated to values between zero and one. The inverse-gamma prior for the scale parameter,

σ(k), are set as σ̄1 = 0.1938 and σ̄2 = 2.1551. It may be worth noting that we impose the

exact same prior across regimes and across countries, so that the differences in parameters

between regimes and countries result more from data (i.e., the likelihood) rather than priors.

We imply a prior belief that the average duration of staying in the same regime is about eleven

months. This means that, for example, the hyperparameters are q̄1,j = 20, q̄2,j = q̄3,j = 1 for

the first regime. See Sims, Waggoner, and Zha (2008) for further details on how to define

prior beliefs about the persistence of the regimes.

The MCMC sampling scheme at the (n)st iteration, for n = 1, . . . , N1 + N2, consists of

sampling from the following conditional posterior distributions

(1) p
(
S

(n)
T |YT , θ(n−1), Q(n−1)

)
,

(2) p
(
Q(n)|ST

)
,

(3) p
(
θ(n)(k)|YT , S(n)

T , σ(n−1)
)

,

(4) p
(
σ(k)(n)|YT , S(n)

T , θ(n)
)

,

where Yt are observed data, θ = θ(k)k∈H , and σ = σ(k)k∈H . Simulation from the conditional

posterior density p
(
S

(n)
T |YT , θ(n−1)

)
, given θ and Q, is standard and in closed form. Sim-

ulation from the conditional posterior density p
(
Q(n)|ST

)
is of the dirichlet form. Simulations

from the conditional posterior densities p
(
θ(n)(k)|YT , S(n)

T , σ(n−1)
)

and p
(
σ(k)(n)|YT , S(n)

T , θ(n)
)

reduces to Bayesian inference for Markov-switching models with known allocations, ST .
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The sampler begins with setting parameters at the peak of the posterior density function.

We generate N1 + N2 = 11, 000 draws, the first N1 = 1,000 are discarded as burn-in and of

the remaining N2 = 10, 000 draws, one of every 10 draws is retained to get 1, 000 draws of

parameters and sequences of regimes.

We now provide further details on each of these conditional density functions. In the

remainder of this section, we simplify the notation by suppressing the superscript n denoting

the n-th draws of the simulation.

F.1.1. Conditional posterior densities, p (ST |YT , θ, Q). Following the Carter and Kohn (1994)’s

multi-move Gibbs-sampling procedure, one can stimulate ST as a block. We begin with a

draw from p(sT |YT , θ, Q) obtained with the Hamilton (1989) basic filter, and then iterate

recursively backward to draw sT−1, sT−2, . . . , 1 according to

p(st|YT , θ, Q) =
∑

st+1∈H

p(st|Yt, θ, Q, st+1)p(st+1|YT , θ, Q), (13)

where

p(st|Yt, θ, Q, st+1) =
qst+1,stp(st|Yt, θ, Q)

p(st+1|Yt, θ, Q)
(14)

F.1.2. Conditional posterior densities, p (Q|ST ). Given the historical path of regimes, the

transition matrix can be directly simulate from the Dirichlet distribution. For each column

k of Q, denoted qk, the conditional posterior distribution is given by

p(qk|ST ) = dirichet(qk|q̄1,k + η1,k, q̄2,k + η2,k, q̄3,k + η3,k), (15)

where q̄1,k, q̄2,k and q̄3,k are the parameters describing the prior, and ηi,k denotes the numbers

of transitions from state k to state i.

F.1.3. Conditional posterior densities, p (θ(k)|YT , ST , σ). Geweke (1996) implements a Gibbs

sampling procedure for the problem of multiple linear regression with a set of independent

inequality linear constraints. We follow a similar procedure for our Markov-switching model

with known allocations ST .

The Markov-switching model in (8) can be rewritten in a compact as yt = θ(st)
′xt+σ(st)εt,

where yt is our variable of interest, and xt contains the vectors of observed data at date t.

Let y∗t = yt
σst

, and x∗t = xt
σst

, we obtain an homoskedastic model as follows

y∗t = θ(st)
′x∗t + νt, (16)
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where νt follows a standard normal distribution. Then, simulation from the full conditional

distribution of Ψ, given YT , ST , and σ, becomes straightforward, given a conjugate prior

distribution. For 1 ≤ k ≤ H, the posterior is defined as

p (θ(k)|YT , ST ) = truncated-normal (θ(k)|mµ,k,Mµ,k)a≤θ(k)≤b , (17)

where truncated-normal(x|x̄1, x̄2)a≤x≤b is the truncated multivariate normal distribution with

mean x̄1, variance-covariance x̄2, and inequality constraints a ≤ x ≤ b. The vector mµ,k and

matrix Mµ,k are defined as follows

mµ,k =
(
θ̄−1

2 + Σxx,k

)−1 (
θ̄−1

2 θ̄1 + Σxy,k

)
, (18)

Mµ,k =
(
θ̄−1

2 + Σxx,k

)−1
, (19)

with θ̄1 and θ̄2 are known hyperparameters of the prior distribution, and

Σxx,k =
∑

t∈{t:st=k}

x∗tx
∗′
t ,

Σxy,k =
∑

t∈{t:st=k}

x∗ty
∗
t .

This step implies a computational complication that requires the simulation from a trun-

cated multivariate normal distribution. We use the minimax tilting method proposed by

Botev (2017) for exact independently and identically distributed data simulation from the

truncated multivariate normal distribution.9 The method is an excellent algorithm designed

for extremely fast simulation.

F.1.4. Conditional posterior densities, p (σ(k)|YT , ST , θ). Given Yt, ST , and θ, the scale pa-

rameter σ(k) can be drawn using the following inverse-gamma distribution

p (σ(k)|YT , ST , θ) = inv-gamma(σ(k)|α̃, β̃), (20)

where

α̃ = σ̄1 +
∑

t∈{t:st=k}

(
yt − θ′stxt

)2
,

β̃ = σ̄2 + Tk,

9The Matlab function is available at https://fr.mathworks.com/matlabcentral/fileexchange/53792-

truncated-multivariate-normal-generator.
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with
∑

t∈{t:st=k}
(
yt − θ′stxt

)2
is the sum of squared residual, Tk is the number of elements of

t’s such that st = k for k = 1, 2, 3, and σ̄1 and σ̄2 are the hyperparameters.

F.2. Additional Results. Tables F1, F2, F3 and F4 reports the posterior distribution of

parameters for each country.

Table F1. Posterior Distributions - Markov-switching framework

µi(st = 1) λi(st = 1) θi(st = 1) γi(st = 1) δi(st = 1) φi(st = 1) σi(st = 1)

Germany −1.09
[−1.35;−0.81]

0.46
[0.20;0.75]

−0.50
[−1.52;−0.05]

0.46
[0.10;0.84]

1.29
[−0.21;3.83]

0.16
[0.02;0.53]

0.33
[0.26;0.44]

France −1.05
[−1.18;−0.90]

0.93
[0.78;0.99]

−0.07
[−0.22;−0.00]

0.15
[0.01;0.42]

−0.65
[−1.33;0.06]

0.11
[0.02;0.22]

0.21
[0.18;0.27]

Italy −0.81
[−1.15;−0.43]

0.66
[0.33;0.94]

−0.11
[−0.31;−0.01]

0.13
[0.01;0.36]

0.29
[−1.17;1.38]

0.07
[0.01;0.24]

0.28
[0.22;0.33]

Spain −1.78
[−2.05;−1.21]

0.90
[0.63;0.99]

−0.13
[−0.29;−0.01]

0.31
[0.03;0.86]

−0.56
[−2.38;0.32]

0.20
[0.04;0.40]

0.35
[0.26;0.50]

Netherlands −0.93
[−1.07;−0.79]

0.89
[0.77;0.98]

−0.69
[−1.02;−0.30]

0.32
[0.07;0.62]

0.31
[−0.34;0.92]

0.18
[0.03;0.37]

0.30
[0.25;0.36]

Finland −0.93
[−1.14;−0.70]

0.70
[0.49;0.89]

−0.12
[−0.27;−0.01]

0.12
[0.01;0.41]

0.56
[−1.23;2.00]

0.20
[0.03;0.38]

0.27
[0.23;0.32]

Ireland −1.55
[−1.95;−1.28]

0.96
[0.87;1.00]

−0.04
[−0.14;−0.00]

0.09
[0.01;0.32]

−4.30
[−5.09;−3.38]

0.24
[0.02;0.55]

0.56
[0.47;0.68]

Austria −0.62
[−0.82;−0.44]

0.81
[0.59;0.96]

−0.14
[−0.42;−0.01]

0.18
[0.02;0.55]

0.32
[−0.49;1.67]

0.25
[0.05;0.86]

0.27
[0.22;0.37]

Portugal −0.79
[−1.01;−0.61]

0.48
[0.36;0.59]

−0.04
[−0.16;−0.00]

0.30
[0.05;0.69]

−1.01
[−1.64;−0.30]

0.04
[0.00;0.14]

0.54
[0.48;0.60]

Belgium −0.54
[−8.36;−0.40]

0.81
[0.14;0.97]

−0.24
[−7.66;−0.03]

0.22
[0.02;801.67]

0.48
[−5.56;5.23]

0.14
[0.01;8.22]

0.21
[0.17;0.94]

Luxembourg −0.47
[−0.65;−0.29]

0.86
[0.56;0.99]

−0.12
[−0.40;−0.01]

0.28
[0.05;0.56]

0.03
[−0.92;0.96]

0.16
[0.02;0.35]

0.24
[0.20;0.29]

Greece −2.79
[−3.69;−1.96]

0.43
[0.04;0.99]

−0.10
[−0.38;−0.01]

1.99
[0.70;3.71]

0.17
[−5.26;3.82]

0.52
[0.08;1.10]

0.71
[0.51;1.03]

Mean −1.11 0.74 −0.19 0.38 −0.26 0.19 0.36

Std. Dev. 0.65 0.19 0.20 0.52 1.41 0.12 0.16

Note: Posterior median of Phillips curve’s parameters based on Equation (8): π̄it+1,t+h =

µi(sit) +
(
1− λi(sit)

)
π∗,i
t−1 + λi(sit)π

LTE,i + θi(sit)
(
uit − u

∗,i
t

)
+ γi(sit)

(
πo,∗t − π

∗,i
t

)
+

δi(sit)f
i
t + φi(sit)sct + σi(sit)ε

i
t. The 90% probability interval is indicated in brackets.
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Table F2. Posterior Distributions - Markov-switching framework

µi(st = 2) λi(st = 2) θi(st = 2) γi(st = 2) δi(st = 2) φi(st = 2) σi(st = 2)

Germany −0.45
[−0.57;−0.33]

0.92
[0.77;0.99]

−0.43
[−0.71;−0.13]

0.24
[0.04;0.47]

−0.26
[−0.66;0.26]

0.19
[0.06;0.31]

0.27
[0.23;0.31]

France −0.43
[−0.55;−0.28]

0.89
[0.76;0.98]

−0.30
[−0.55;−0.08]

0.11
[0.01;0.25]

−0.78
[−1.18;−0.35]

0.05
[0.01;0.16]

0.18
[0.15;0.22]

Italy 0.07
[−0.12;0.27]

0.76
[0.32;0.98]

−0.11
[−0.33;−0.01]

0.22
[0.04;0.50]

−0.35
[−1.66;1.42]

0.09
[0.01;0.22]

0.26
[0.20;0.32]

Spain −0.27
[−0.42;−0.08]

0.50
[0.38;0.66]

−0.06
[−0.18;−0.01]

0.11
[0.01;0.53]

−0.21
[−0.98;0.69]

0.04
[0.00;0.14]

0.30
[0.25;0.36]

Netherlands −0.18
[−0.43;0.01]

0.81
[0.63;0.96]

−0.91
[−1.49;−0.29]

0.36
[0.06;0.72]

0.35
[−1.01;2.85]

0.19
[0.03;0.59]

0.33
[0.25;0.45]

Finland −0.04
[−0.20;0.10]

0.73
[0.39;0.94]

−0.13
[−0.31;−0.01]

0.44
[0.12;0.88]

0.51
[−0.12;4.89]

0.24
[0.05;0.48]

0.25
[0.20;0.31]

Ireland −0.62
[−0.79;−0.45]

0.77
[0.67;0.89]

−0.08
[−0.26;−0.01]

0.41
[0.08;0.88]

−1.16
[−2.55;0.08]

0.10
[0.01;0.28]

0.38
[0.32;0.44]

Austria −0.07
[−0.21;0.06]

0.91
[0.74;0.99]

−0.10
[−0.32;−0.01]

0.23
[0.04;0.48]

0.32
[−0.51;1.97]

0.22
[0.06;0.37]

0.23
[0.19;0.27]

Portugal 0.04
[−0.20;0.38]

0.33
[0.21;0.46]

−0.30
[−0.65;−0.05]

1.13
[0.86;1.40]

2.03
[0.55;3.12]

0.16
[0.02;0.42]

0.39
[0.33;0.45]

Belgium 0.03
[−0.51;0.42]

0.89
[0.70;0.99]

−0.19
[−0.62;−0.02]

0.12
[0.01;0.41]

0.12
[−1.48;1.07]

0.12
[0.02;0.54]

0.22
[0.18;0.29]

Luxembourg 0.08
[−0.06;0.20]

0.85
[0.69;0.98]

−0.22
[−0.49;−0.04]

0.24
[0.05;0.49]

−0.20
[−0.93;0.62]

0.04
[0.00;0.14]

0.18
[0.15;0.21]

Greece −1.08
[−1.30;−0.81]

0.72
[0.58;0.93]

−0.48
[−0.74;−0.08]

0.19
[0.02;0.51]

0.64
[−0.67;1.84]

0.29
[0.05;0.54]

0.48
[0.37;0.57]

Mean −0.24 0.76 −0.28 0.32 0.08 0.14 0.29

Std. Dev. 0.35 0.18 0.24 0.28 0.81 0.08 0.09

Note: Posterior median of Phillips curve’s parameters based on Equation (8): π̄it+1,t+h =

µi(sit) +
(
1− λi(sit)

)
π∗,i
t−1 + λi(sit)π

LTE,i + θi(sit)
(
uit − u

∗,i
t

)
+ γi(sit)

(
πo,∗t − π

∗,i
t

)
+

δi(sit)f
i
t + φi(sit)sct + σi(sit)ε

i
t. The 90% probability interval is indicated in brackets.
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Table F3. Posterior Distributions - Markov-switching framework

µi(st = 3) λi(st = 3) θi(st = 3) γi(st = 3) δi(st = 3) φi(st = 3) σi(st = 3)

Germany 0.65
[0.41;0.95]

0.91
[0.71;0.99]

−0.15
[−0.65;−0.01]

0.21
[0.02;0.69]

−2.67
[−4.17;−0.79]

0.37
[0.19;0.56]

0.48
[0.38;0.62]

France 0.17
[0.02;0.33]

0.84
[0.61;0.98]

−0.57
[−0.93;−0.20]

0.13
[0.01;0.36]

−0.87
[−3.02;1.43]

0.30
[0.19;0.42]

0.21
[0.18;0.26]

Italy 0.78
[0.53;1.07]

0.58
[0.25;0.87]

−0.22
[−0.75;−0.03]

0.21
[0.02;0.59]

0.75
[−0.93;2.78]

0.08
[0.00;0.30]

0.33
[0.25;0.41]

Spain 0.97
[0.73;1.23]

0.90
[0.69;0.99]

−0.73
[−1.06;−0.41]

0.11
[0.01;0.39]

−2.55
[−3.82;−1.15]

0.45
[0.25;0.70]

0.44
[0.35;0.53]

Netherlands 1.24
[0.82;1.92]

0.91
[0.68;0.99]

−1.16
[−2.29;−0.37]

1.11
[0.40;1.70]

−0.17
[−2.85;3.35]

0.08
[0.01;0.30]

0.57
[0.40;0.73]

Finland 0.31
[0.01;0.81]

0.56
[0.18;0.89]

−0.18
[−0.51;−0.02]

0.73
[0.21;1.13]

1.42
[−1.06;4.59]

0.39
[0.13;0.57]

0.27
[0.21;0.36]

Ireland 1.68
[1.21;2.18]

0.68
[0.52;0.86]

−0.65
[−1.21;−0.16]

0.16
[0.02;0.53]

0.67
[−4.09;5.03]

0.71
[0.41;1.02]

0.84
[0.73;0.98]

Austria 0.61
[0.28;0.92]

0.80
[0.34;0.98]

−0.20
[−0.58;−0.02]

0.47
[0.10;0.95]

0.39
[−0.92;1.96]

0.60
[0.32;0.81]

0.30
[0.23;0.38]

Portugal 2.06
[1.62;2.51]

0.72
[0.29;0.96]

−2.02
[−2.89;−1.00]

1.54
[0.70;2.26]

0.66
[−4.27;5.26]

0.43
[0.08;1.01]

0.52
[0.39;0.71]

Belgium 0.64
[0.40;1.26]

0.87
[0.28;0.99]

−0.49
[−0.84;−0.10]

0.37
[0.05;0.90]

−0.36
[−2.20;1.48]

0.31
[0.07;0.52]

0.33
[0.24;0.42]

Luxembourg 0.63
[0.29;1.00]

0.59
[0.26;0.89]

−0.32
[−0.87;−0.03]

0.26
[0.03;0.64]

−0.30
[−2.89;2.00]

0.40
[0.24;0.55]

0.28
[0.20;0.40]

Greece 0.48
[0.21;0.73]

0.87
[0.73;0.97]

−0.35
[−0.70;−0.06]

0.66
[0.27;1.03]

1.55
[−0.26;3.65]

0.33
[0.03;0.65]

0.58
[0.49;0.67]

Mean 0.85 0.77 −0.59 0.50 −0.12 0.37 0.43

Std. Dev. 0.56 0.14 0.54 0.45 1.36 0.18 0.18

Note: Posterior median of Phillips curve’s parameters based on Equation (8): π̄it+1,t+h =

µi(sit) +
(
1− λi(sit)

)
π∗,i
t−1 + λi(sit)π

LTE,i + θi(sit)
(
uit − u

∗,i
t

)
+ γi(sit)

(
πo,∗t − π

∗,i
t

)
+

δi(sit)f
i
t + φi(sit)sct + σi(sit)ε

i
t. The 90% probability interval is indicated in brackets.
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Table F4. Posterior Distributions - Transition Matrices

qi11 qi21 qi31 qi12 qi22 qi32 qi13 qi23 qi33

Germany 0.87
[0.80;0.93]

0.08
[0.03;0.15]

0.04
[0.01;0.10]

0.04
[0.02;0.07]

0.93
[0.88;0.96]

0.03
[0.01;0.07]

0.03
[0.01;0.07]

0.08
[0.04;0.15]

0.89
[0.82;0.94]

France 0.92
[0.85;0.96]

0.05
[0.01;0.11]

0.03
[0.01;0.08]

0.06
[0.02;0.13]

0.89
[0.80;0.94]

0.05
[0.02;0.12]

0.02
[0.00;0.07]

0.05
[0.01;0.10]

0.92
[0.87;0.96]

Italy 0.94
[0.89;0.98]

0.04
[0.01;0.09]

0.02
[0.00;0.04]

0.04
[0.02;0.10]

0.91
[0.84;0.95]

0.05
[0.02;0.09]

0.02
[0.00;0.06]

0.07
[0.03;0.13]

0.90
[0.84;0.95]

Spain 0.89
[0.82;0.94]

0.07
[0.03;0.14]

0.03
[0.01;0.09]

0.03
[0.01;0.06]

0.92
[0.88;0.96]

0.04
[0.02;0.08]

0.03
[0.01;0.07]

0.07
[0.03;0.13]

0.90
[0.84;0.95]

Netherlands 0.92
[0.87;0.95]

0.07
[0.03;0.11]

0.02
[0.00;0.04]

0.07
[0.03;0.12]

0.89
[0.83;0.94]

0.04
[0.01;0.09]

0.03
[0.01;0.09]

0.06
[0.02;0.12]

0.90
[0.83;0.96]

Finland 0.95
[0.91;0.98]

0.03
[0.01;0.06]

0.02
[0.00;0.05]

0.04
[0.01;0.08]

0.91
[0.84;0.95]

0.05
[0.02;0.11]

0.03
[0.01;0.08]

0.07
[0.03;0.13]

0.90
[0.82;0.95]

Ireland 0.91
[0.85;0.96]

0.06
[0.02;0.12]

0.02
[0.00;0.06]

0.04
[0.02;0.08]

0.93
[0.89;0.96]

0.02
[0.01;0.05]

0.02
[0.00;0.05]

0.04
[0.02;0.08]

0.94
[0.89;0.97]

Austria 0.88
[0.82;0.94]

0.09
[0.04;0.15]

0.03
[0.01;0.08]

0.05
[0.02;0.08]

0.90
[0.84;0.94]

0.05
[0.02;0.10]

0.02
[0.00;0.07]

0.09
[0.04;0.16]

0.88
[0.80;0.93]

Portugal 0.94
[0.90;0.97]

0.04
[0.01;0.07]

0.02
[0.00;0.04]

0.05
[0.02;0.09]

0.92
[0.88;0.96]

0.02
[0.01;0.05]

0.04
[0.01;0.10]

0.06
[0.02;0.13]

0.90
[0.81;0.96]

Belgium 0.91
[0.75;0.96]

0.06
[0.02;0.15]

0.03
[0.00;0.15]

0.06
[0.00;0.14]

0.89
[0.78;0.96]

0.06
[0.03;0.11]

0.02
[0.00;0.08]

0.08
[0.04;0.16]

0.89
[0.80;0.94]

Luxembourg 0.92
[0.88;0.96]

0.05
[0.02;0.10]

0.02
[0.00;0.06]

0.04
[0.02;0.08]

0.92
[0.88;0.96]

0.03
[0.01;0.07]

0.03
[0.01;0.09]

0.08
[0.03;0.16]

0.88
[0.79;0.94]

Greece 0.92
[0.86;0.96]

0.05
[0.02;0.11]

0.02
[0.01;0.07]

0.03
[0.01;0.07]

0.92
[0.88;0.96]

0.04
[0.02;0.08]

0.01
[0.00;0.04]

0.03
[0.01;0.06]

0.95
[0.92;0.98]

Note: Posterior median of transition matrices. The 90% probability interval is indicated in brackets.
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